Rubio, B. et al, Orrigo, S. E. A., Montaner-Piza, A., Agramunt, J., Algora, A., & Molina, F. (2014). Beta Decay Study of the T-z =-2 Zn-56 Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei. Nucl. Data Sheets, 120, 37–40.
Abstract: This paper concerns the experimental study of the beta decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The beta-delayed gammas, beta-delayed protons and the exotic beta-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T-z = -2 nucleus Zn-56 has been studied in detail. Information from the beta-delayed protons and beta-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in Co-56, the mirror nucleus of Cu-56.
|
Caballero-Folch, R. et al, Domingo-Pardo, C., Tain, J. L., Agramunt, J., Algora, A., & Rubio, B. (2014). beta-decay and beta-delayed Neutron Emission Measurements at GSI-FRS Beyond N=126, for r-process Nucleosynthesis. Nucl. Data Sheets, 120, 81–83.
Abstract: New measurements of very exotic nuclei in the neutron-rich region beyond N=126 have been performed at the GSI facility with the fragment separator (FRS). The aim of the experiment is to determine half-lives and beta-delayed neutron emission branching ratios of isotopes of Hg, Tl and Pb in this region. This contribution summarizes final counting statistics for identification and for implantation, as well as the present status of the data analysis of the half-lives. In summary, isotopes of Pt, Au, Hg, Ti, Pb, Bi, Po, At, Rn and Fr were clearly identified and several of them (Hg208-211, Tl211-215, Pb214-218) were implanted with enough statistics to determine their half-lives. About half of them are expected to be neutron emitters, in such cases it will become possible to obtain the neutron emission probabilities, P-n.
|
Morales, A. I. et al, Gadea, A., & Algora, A. (2014). beta-decay studies of neutron-rich Tl, Pb, and Bi isotopes. Phys. Rev. C, 89(1), 014324–13pp.
Abstract: The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft fur Schwerionenforschung laboratory to investigate the beta decay of neutron-rich nuclei just beyond Pb-208. This paper reports on beta-delayed gamma decays of Tl211-213, Pb-215, and Bi215-219 de-exciting states in the daughters Pb211-213, Bi-215, and Po215-219. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden beta transitions in this mass region is discussed.
|
Bazeia, D., Losano, L., Olmo, G. J., & Rubiera-Garcia, D. (2014). Black holes in five-dimensional Palatini f(R) gravity and implications for the AdS/CFT correspondence. Phys. Rev. D, 90(4), 044011–8pp.
Abstract: We show that theories having second-order field equations in the context of higher-dimensional modified gravity are not restricted to the family of Lovelock Lagrangians, but can also be obtained if no a priori assumption on the relation between the metric and affine structures of space-time is made (the Palatini approach). We illustrate this fact by considering the case of Palatini f(R) gravities in five dimensions. Our results provide an alternative avenue to explore new domains of the AdS/CFT correspondence without resorting to ad hoc quasitopological constructions.
|
Altheimer, A. et al, Fassi, F., Gonzalez de la Hoz, S., Kaci, M., Oliver Garcia, E., Rodrigo, G., et al. (2014). Boosted objects and jet substructure at the LHC. Eur. Phys. J. C, 74(3), 2792–24pp.
Abstract: This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of first-principle QCD calculations to yield a precise description of the substructure of jets and study the accuracy of state-of-the-art Monte Carlo tools. Limitations of the experiments' ability to resolve substructure are evaluated, with a focus on the impact of additional (pile-up) proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt from jet substructure analyses in searches for new physics in the production of boosted top quarks.
|
Makarenko, A. N., Odintsov, S., & Olmo, G. J. (2014). Born-Infeld f(R) gravity. Phys. Rev. D, 90(2), 024066–15pp.
Abstract: Motivated by the properties of matter quantum fields in curved space-times, we work out a gravity theory that combines the Born-Infeld gravity Lagrangian with an f(R) piece. To avoid ghostlike instabilities, the theory is formulated within the Palatini approach. This construction provides more freedom to address a number of important questions, such as the dynamics of the early Universe and the cosmic accelerated expansion, among others. In particular, we consider the effect that adding an f(R) = aR(2) term has on the early-time cosmology. We find that bouncing solutions are robust against these modifications of the Lagrangian whereas the solutions with loitering behavior of the original Born-Infeld theory are very sensitive to the R-2 term. In fact, these solutions are modified in such a way that a plateau in the H-2 function may arise, yielding a period of (approximately) de Sitter inflationary expansion. This inflationary behavior may be found even in a radiation-dominated universe.
|
Odintsov, S. D., Olmo, G. J., & Rubiera-Garcia, D. (2014). Born-Infeld gravity and its functional extensions. Phys. Rev. D, 90(4), 044003–8pp.
Abstract: We investigate the dynamics of a family of functional extensions of the (Eddington-inspired) Born-Infeld gravity theory, constructed with the inverse of the metric and the Ricci tensor. We provide a generic formal solution for the connection and an Einstein-like representation for the metric field equations of this family of theories. For particular cases we consider applications to the early-time cosmology and find that nonsingular universes with a cosmic bounce are very generic and robust solutions.
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Bottomonium spectroscopy and radiative transitions involving the chi(bJ)(1P, 2P) states at BABAR. Phys. Rev. D, 90(11), 112010–20pp.
Abstract: We use (121 +/- 1) million Upsilon(3S) and (98 +/- 1) million Upsilon(2S) mesons recorded by the BABAR detector at the PEP-II e(+)e(-) collider at SLAC to perform a study of radiative transitions involving the chi(bJ)(1P, 2P) states in exclusive decays with mu(+)mu(-)gamma gamma final states. We reconstruct twelve channels in four cascades using two complementary methods. In the first we identify both signal photon candidates in the electromagnetic calorimeter (EMC), employ a calorimeter timing-based technique to reduce backgrounds, and determine branching-ratio products and fine mass splittings. These results include the best observational significance yet for the chi(b0)(2P) -> gamma Upsilon(2S) and chi(b0)(1P) -> gamma Upsilon(1S) transitions. In the second method, we identify one photon candidate in the EMC and one which has converted into an e(+)e(-) pair due to interaction with detector material, and we measure absolute product branching fractions. This method is particularly useful for measuring Upsilon(3S) -> gamma chi(b1,2)(1P) decays. Additionally, we provide the most up-to-date derived branching fractions, matrix elements and mass splittings for chi(b) transitions in the bottomonium system. Using a new technique, we also measure the two lowest-order spin-dependent coefficients in the nonrelativistic QCD Hamiltonian.
|
Li, X. Q., Lu, J., & Pich, A. (2014). Bs,d(0) -> l(+)l(-) decays in the aligned two-Higgs-doublet model. J. High Energy Phys., 06(6), 022–39pp.
Abstract: The rare decays B-s,d(0) -> l(+)l(-) are analyzed within the general framework of the aligned two-Higgs doublet model. We present a complete one-loop calculation of the relevant short-distance Wilson coefficients, giving a detailed technical summary of our results and comparing them with previous calculations performed in particular limits or approximations. We investigate the impact of various model parameters on the branching ratios and study the phenomenological constraints imposed by present data.
|
Ghazi Moradi, F. et al, & Huyuk, T. (2014). Character of particle-hole excitations in Ru-94 deduced from gamma-ray angular correlation and linear polarization measurements. Phys. Rev. C, 89(1), 014301–9pp.
Abstract: Linear polarization and angular correlations of gamma-rays depopulating excited states in the neutron-deficient nucleus Ru-94(44)50 have been measured, enabling firm spin-parity assignments for several excited states in this nucleus. The deduced multipolarities of strong transitions in the yrast structure were found to be mostly of stretched M1, E1, and E2 types and, in most cases, in agreement with previous tentative assignments. The deduced multipolarity of the 1869 keV and the connecting 257 and 1641 keV transitions indicates that the state at 6358 keV excitation energy has spin parity 12(1)(-) rather than 12(3)(+) as proposed in previous works. The presence of a 12(1)(-) state is interpreted within the framework of large-scale shell-model calculations as a pure proton-hole state dominated by the pi(p(1/2)(-1)circle times g(9/2)(-5)) and pi(p(3/2)(-1) g(9/2)(-5)) configurations. A new positive-parity state is observed at 6103 keV and is tentatively assigned as 12(2)(+). The 14(1)(-) state proposed earlier is reassigned as 13(4)(-) and is interpreted as being dominated by neutron particle-hole core excitations. The strengths of several E1 transitions have been measured and are found to provide a signature of core-excited configurations.
|