LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Observation of the Resonant Character of the Z(4430)(-) State. Phys. Rev. Lett., 112(22), 222002–9pp.
Abstract: Resonant structures in B-0 -> psi'pi K--(+) decays are analyzed by performing a four-dimensional fit of the decay amplitude, using pp collision data corresponding to 3 fb(-1) collected with the LHCb detector. The data cannot be described with K+pi(-) resonances alone, which is confirmed with a model-independent approach. A highly significant Z(4430)(-) -> psi'pi(-) component is required, thus confirming the existence of this state. The observed evolution of the Z(4430)(-) amplitude with the psi'pi(-) mass establishes the resonant nature of this particle. The mass and width measurements are substantially improved. The spin parity is determined unambiguously to be 1(+).
|
Deppisch, F. F., Harz, J., & Hirsch, M. (2014). Falsifying High-Scale Leptogenesis at the LHC. Phys. Rev. Lett., 112(22), 221601–5pp.
Abstract: Measuring a nonzero value for the cross section of any lepton number violating (LNV) process would put a strong lower limit on the washout factor for the effective lepton number density in the early Universe at times close to the electroweak phase transition and thus would lead to important constraints on any high-scale model for the generation of the observed baryon asymmetry based on LNV. In particular, for leptogenesis (LG) models with masses of the right-handed neutrinos heavier than the mass scale observed at the LHC, the implied large washout factors would lead to a violation of the out-of-equilibrium condition and exponentially suppress the net lepton number produced in such LG models. We thus demonstrate that the observation of LNV processes at the LHC results in the falsification of high-scale LG models. However, no conclusions about the viability of LG models can be drawn from the nonobservation of LNV processes.
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., Fiorini, L., et al. (2014). Observation of an Excited B-c(+/-) Meson State with the ATLAS Detector. Phys. Rev. Lett., 113(21), 212004–18pp.
Abstract: A search for excited states of the B-c(+/-) meson is performed using 4.9 fb(-1) of 7 TeV and 19.2 fb(-1) of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decayB(c)(+/-) -> J/psi pi(+/-). The state appears in the m(B-c(+/-)pi(+)pi(-)) – m(B-c(+/-)) – 2m(pi(+/-)) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842 +/- 4 +/- 5 MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations for the second S-wave state of the B-c(+/-) meson, B-c(+/-)(2S).
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Measurement of the B -> X(s)l(+)l(-) Branching Fraction and Search for Direct CP Violation from a Sum of Exclusive Final States. Phys. Rev. Lett., 112(21), 211802–8pp.
Abstract: We measure the total branching fraction of the flavor-changing neutral-current process B -> X(s)l(+)l(-), along with partial branching fractions in bins of dilepton and hadronic system (X-s) mass, using a sample of 471 x 10(6)Upsilon(4S) -> B (B) over bar events recorded with the BABAR detector. The admixture of charged and neutral B mesons produced at PEP-II2 are reconstructed by combining a dilepton pair with 10 different X-s final states. Extrapolating from a sum over these exclusive modes, we measure a lepton-flavor-averaged inclusive branching fraction B(B -> X(s)l(+)l(-)) = [6.73(-0.64)(+0.70)(stat)(-0.25)(+0.34)(exp syst) +/- 0.50(model syst)] x 10(-6) for m(l+l-)(2) > 0.1 GeV2/c(4). Restricting our analysis exclusively to final states from which a decaying B meson's flavor can be inferred, we additionally report measurements of the direct CP asymmetry A(CP) in bins of dilepton mass; over the full dilepton mass range, we find A(CP) = 0.04 +/- 0.11 +/- 0.01 for a leptonflavor-averaged sample.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Measurement of the CP-Violating Phase phi(s) in (B)over-bar(s)(0) -> Ds+Ds- Decays. Phys. Rev. Lett., 113(21), 211801–9pp.
Abstract: We present a measurement of the CP-violating weak mixing phase phi(s) using the decay (B) over bar (0)(s) -> Ds+Ds- in a data sample corresponding to 3.0 fb(-1) of integrated luminosity collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV. An analysis of the time evolution of the system, which does not use the constraint vertical bar lambda vertical bar = 1 to allow for the presence of CP violation in decay, yields phi(s) = 0.02 +/- 0.17(stat) +/- 0.02(syst) rad, vertical bar lambda vertical bar = 0.91(-0.15)(+0.18)(stat) +/- 0.02(syst). This result is consistent with the standard model expectation.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Study of Beauty Hadron Decays into Pairs of Charm Hadrons. Phys. Rev. Lett., 112(20), 202001–9pp.
Abstract: First observations of the decays A(b)(0) -> A(c)(+)D((s))(-) are reported using data corresponding to an integrated luminosity of 3 fb(-1) collected at 7 and 8 TeV center-of- ass energies in proton-proton collisions with the LHCb detector. In addition, the most precise measurement of the branching fraction B(B-s(0) -> D+Ds-) is made and a search is performed for the decays B-0((s)) -> A(c)(+)A(c)(-). The results obtained are B(A(b)(0) -> A(c)(+)D(-))/B(A(b)(0) -> A(c)(+)D(s)(-)) = 0.042 +/- 0.003 (stat) +/- 0.003 (syst), [B(A(b)(0) -> A(c)(+)D(s)(-))/B((B) over bar (0) -> D+Ds-)]/[B(A(b)(0) -> A(c)(+)pi(-))/B((B) over bar (0) -> D+pi(-))] = 0.96 +/- 0.02 (stat) +/- 0.06 (syst), B(B-s(0) -> D+Ds-)/B((B) over bar (0) -> D+Ds-) = 0.038 +/- 0.004 (stat) +/- (syst), B((B) over bar (0) -> A(c)(+)A(c)(-))/B((B) over bar (0) -> D+Ds-) < 0.0022[95% C.L.], B(B-s(0) -> A(c)(+)A(c)(-)) /B(B-s(0) -> D+Ds-) < 0.30[95% C.L.]. Measurement of the mass of the A(b)(0) baryon relative to the (B) over bar (0) meson gives M(A(b)(0)) – M((B) over bar (0)) = 339.72 +/- 0.24 (stat) +/- 0.18 (syst) MeV/c(2). This result provides the most precise measurement of the mass of the A(b)(0) baryon to date.
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., Ferrer, A., et al. (2014). Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS. Phys. Rev. Lett., 112(20), 201802–19pp.
Abstract: A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in 4.5 fb(-1) (20.3 fb(-1)) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110 < m(H) < 400 GeV, produced in association with a Z boson and decaying to invisible particles.
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Search for a Dark Photon in e(+)e(-) Collisions at BABAR. Phys. Rev. Lett., 113(20), 201801–8pp.
Abstract: Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A'), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e(+)e(-) ->gamma A', A' -> e(+)e(-), mu(+) mu(-) using 514 fb(-1) of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10(-4) – 10(-3) for dark photon masses in the range 0.02-10.2 GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.
|
Marchi, T. et al, & Gadea, A. (2014). Quadrupole Transition Strength in the Ni-74 Nucleus and Core Polarization Effects in the Neutron-Rich Ni Isotopes. Phys. Rev. Lett., 113(18), 182501–5pp.
Abstract: The reduced transition probability B(E2;0(+) -> 2(+)) has been measured for the neutron-rich nucleus Ni-74 in an intermediate energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory at Michigan State University. The obtained B(E2;0(+) -> 2(+)) = 642(-226)(+216) e(2) fm(4) value defines a trend which is unexpectedly small if referred to Ni-70 and to a previous indirect determination of the transition strength in Ni-74. This indicates a reduced polarization of the Z = 28 core by the valence neutrons. Calculations in the pfgd model space reproduce well the experimental result indicating that the B(E2) strength predominantly corresponds to neutron excitations. The ratio of the neutron and proton multipole matrix elements supports such an interpretation.
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Monfregola, L., Sorel, M., et al. (2014). Precise Measurement of the Neutrino Mixing Parameter theta(23) from Muon Neutrino Disappearance in an Off-Axis Beam. Phys. Rev. Lett., 112(18), 181801–8pp.
Abstract: New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta(23). Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10(20) protons on target, T2K has fit the energy-dependent nu(mu) oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(theta(23)) is 0.514(-0.056)(+0.055) (0.511 +/- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m(32)(2) = (2.51 +/- 0.10) x 10(-3) eV(2)/c(4) (inverted hierarchy: Delta m(13)(2) = (2.48 +/- 0.10) x 10(-3) eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
|