|
Aceti, F., Bayar, M., Dias, J. M., & Oset, E. (2014). Prediction of a Z(c)(4000) state and relationship with the claimed Z(c)(4025). Eur. Phys. J. A, 50(6), 103–13pp.
Abstract: After discussing the OZI suppression of one light meson exchange in the interaction of with isospin I = 1 , we study the contribution of the two-pion exchange to the interaction and the exchange of heavy vectors, J/psi for diagonal transitions and D-* for transitions of to J/psi rho. We find these latter mechanisms to be weak, but enough to barely bind the system in J = 2 with a mass around 4000 MeV, while the effect of the two-pion exchange is a net attraction, though weaker than that from heavy-vector exchange. We discuss this state and try to relate it to the Z (c) (4025) state, above the threshold, claimed in an experiment at BES from an enhancement of the distribution close to threshold. Together with the results from a recent reanalysis of the BES experiment showing that it is compatible with a J = 2 state below threshold around 3990 MeV, we conclude that the BES experiment could show the existence of the state that we find in our approach.
|
|
|
Aceti, F., Bayar, M., Oset, E., Martinez Torres, A., Khemchandani, K. P., Dias, J. M., et al. (2014). Prediction of an I=1 D(D)over-bar* state and relationship to the claimed Z(c)(3900), Z(c)(3885). Phys. Rev. D, 90(1), 016003–13pp.
Abstract: We study here the interaction of D (D) over bar* in the isospin I = 1 channel in light of recent theoretical advances that allow us to combine elements of the local hidden gauge approach with heavy quark spin symmetry. We find that the exchange of light q (q) over bar is Okubo-Zweig-Iizuka (OZI) suppressed and thus we concentrate on the exchange of heavy vectors and of two pion exchange. The latter is found to be small compared to the exchange of heavy vectors, which then determines the strength of the interaction. A barely D (D) over bar* bound state decaying into eta(c)rho and pi J/psi is found. At the same time we reanalyze the data of the BESIII experiment on e(+)e(-) -> pi(+/-)(D (D) over bar*)(-/+), from where a Z(c)(3885) state was claimed, associated to a peak in the (D (D) over bar*)(-/+) invariant mass distribution close to threshold, and we find the data compatible with a resonance with mass around 3875 MeV and width around 30 MeV. We discuss the possibility that this and the Z(c)(3900) state found at BESIII, reconfirmed at 3894 MeV at Belle, or 3885 MeV at CLEO, could all be the same state and correspond to the one that we find theoretically.
|
|
|
Aceti, F., Dai, L. R., Geng, L. S., Oset, E., & Zhang, Y. (2014). Meson-baryon components in the states of the baryon decuplet. Eur. Phys. J. A, 50(3), 57–11pp.
Abstract: We apply an extension of the Weinberg compositeness condition on partial waves of L = 1 and resonant states to determine the weight of the meson-baryon component in the Delta(1232) resonance and the other members of the baryon decuplet. We obtain an appreciable weight of pi N in the Delta(1232) wave function, of the order of 60%, which looks more natural when one recalls that experiments on deep inelastic and Drell Yan give a fraction of pi N component of 34% for the nucleon. We also show that, as we go to higher energies in the members of the decuplet, the weights of the meson-baryon component decrease and they already show a dominant part for a genuine, non-meson-baryon, component in the wave function. We write a section to interpret the meaning of the Weinberg sum rule when it is extended to complex energies and another one for the case of an energy-dependent potential.
|
|
|
Aceti, F., Oset, E., & Roca, L. (2014). Composite nature of the Lambda (1520) resonance. Phys. Rev. C, 90(2), 025208–8pp.
Abstract: Recently, the Weinberg compositeness condition of a bound state was generalized to account for resonant states and higher partial waves. We apply this extension to the case of the Lambda (1520) resonance and quantify the weight of the meson-baryon components in contrast to other possible genuine building blocks. This resonance was theoretically obtained from a coupled channels analysis using the s-wave pi Sigma* and K Xi* and the d-wave (K) over bar N and pi Sigma channels, applying the techniques of the chiral unitary approach. We obtain the result that this resonance is essentially dynamically generated from these meson-baryon channels, leaving room for only 15% weight of other kinds of components in its wave function.
|
|
|
Adey, D. et al, Cervera-Villanueva, A., Donini, A., Ghosh, T., Gomez-Cadenas, J. J., Hernandez, P., et al. (2014). Light sterile neutrino sensitivity at the nuSTORM facility. Phys. Rev. D, 89(7), 071301–7pp.
Abstract: A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c +/- 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10 sigma sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models.
|
|
|
AGATA Collaboration(Crespi, F. C. L. et al), & Gadea, A. (2014). Isospin Character of Low-Lying Pygmy Dipole States in Pb-208 via Inelastic Scattering of O-17 Ions. Phys. Rev. Lett., 113(1), 012501–5pp.
Abstract: The properties of pygmy dipole states in Pb-208 were investigated using the Pb-208(O-17, O-17'gamma) reaction at 340 MeV and measuring the gamma decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted gamma rays and of the scattered particles were measured. The results are compared with (gamma, gamma') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2(+) and 3(-) states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1(-) excited states from 4 to 8 MeV.
|
|
|
AGATA Collaboration(John, P. R. et al), & Gadea, A. (2014). Shape evolution in the neutron-rich osmium isotopes: Prompt gamma-ray spectroscopy of Os-196. Phys. Rev. C, 90(2), 021301–6pp.
Abstract: The shape transition in the neutron-rich Os isotopes is studied by investigating the neutron-rich Os-196 nucleus through in-beam gamma-ray spectroscopy using a two-proton transfer reaction from a Pt-198 target to a Se-82 beam. The beam-like recoils were detected and identified with the large-acceptance magnetic spectrometer PRISMA, and the coincident gamma rays were measured with the advanced gamma tracking array (AGATA) demonstrator. The de-excitation of the low-lying levels of the yrast-band of Os-196 were identified for the first time. The results are compared with state-of-the-art beyond-mean-field calculations, performed for the even-even Os188-198 isotopes. The new results suggest a smooth transition in the Os isotopes from a more axial rotational behavior towards predominately vibrational nuclei through triaxial configurations. An almost perfect gamma-unstable/triaxial rotor yrast band is predicted for Os-196 which is in agreement with the experimentally measured excited states.
|
|
|
AGATA Collaboration(Pellegri, L. et al), & Gadea, A. (2014). Pygmy dipole resonance in Sn-124 populated by inelastic scattering of O-17. Phys. Lett. B, 738, 519–523.
Abstract: The gamma decay from the high-lying states of Sn-124 was measured using the inelastic scattering of O-17 at 340 MeV. The emitted gamma rays were detected with high resolution with the AGATA demonstrator array and the scattered ions were detected in two segmented Delta E-E silicon telescopes. The angular distribution was measured both for the gamma rays and the scattered O-17 ions. An accumulation of E1 strength below the particle threshold was found and compared with previous data obtained with (gamma,gamma') and (alpha,alpha'gamma) reactions. The present results of elastic scattering, and excitation of E2 and E1 states were analysed using the DWBA approach. From this comprehensive description the isoscalar component of the 1-excited states was extracted. The obtained values are based on the comparison of the data with DWBA calculations including a form factor deduced using a microscopic transition density.
|
|
|
Agramunt, J. et al, Algora, A., Domingo-Pardo, C., Jordan, D., Rubio, B., Tain, J. L., et al. (2014). New Beta-delayed Neutron Measurements in the Light-mass Fission Group. Nucl. Data Sheets, 120, 74–77.
Abstract: A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4 pi neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for Br-91, As-86, As-85, and Ge-85 nuclei.
|
|
|
Aguilar, A. C., Binosi, D., Ibañez, D., & Papavassiliou, J. (2014). Effects of divergent ghost loops on the Green's functions of QCD. Phys. Rev. D, 89(8), 085008–26pp.
Abstract: In the present work, we discuss certain characteristic features encoded in some of the fundamental QCD Green's functions, for which the origin can be traced back to the nonperturbative masslessness of the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green's functions display infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the gluonic loops, for which perturbative divergences are tamed by the dynamical generation of an effective gluon mass. In d = 4, the aforementioned divergences are logarithmic, thus causing a relatively mild impact, whereas in d = 3 they are linear, giving rise to enhanced effects. In the case of the gluon propagator, these effects do not interfere with its finiteness, but make its first derivative diverge at the origin, and introduce a maximum in the region of infrared momenta. The three-gluon vertex is also affected, and the induced divergent behavior is clearly exposed in certain special kinematic configurations, usually considered in lattice simulations; the sign of the corresponding divergence is unambiguously determined. The main underlying concepts are developed in the context of a simple toy model, which demonstrates clearly the interconnected nature of the various effects. The picture that emerges is subsequently corroborated by a detailed nonperturbative analysis, combining lattice results with the dynamical integral equations governing the relevant ingredients, such as the nonperturbative ghost loop and the momentumdependent gluon mass.
|
|