Agarwalla, S. K., Lombardi, F., & Takeuchi, T. (2012). Constraining non-standard interactions of the neutrino with Borexino. J. High Energy Phys., 12(12), 079–21pp.
Abstract: We use the Borexino 153.6 ton.year data to place constraints on non-standard neutrino-electron interactions, taking into account the uncertainties in the Be-7 solar neutrino flux and the mixing angle theta(23), and backgrounds due to Kr-85 and Bi-210 beta-decay. We find that the bounds are comparable to existing bounds from all other experiments. Further improvement can be expected in Phase II of Borexino due to the reduction in the Kr-85 background.
|
Bordes, J., Dominguez, C. A., Moodley, P., Peñarrocha, J., & Schilcher, K. (2012). Corrections to the SU(3) x SU(3) Gell-Mann-Oakes-Renner relation and chiral couplings L-8(r) and H-r(2). J. High Energy Phys., 10(10), 102–11pp.
Abstract: Next to leading order corrections to the SU(3) x SU(3) Gell-Mann-OakesRenner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is psi(5)(0) = (2.8 +/- 0.3) x 10(-3) GeV4, leading to the chiral corrections to GMOR: delta(K) = (55 +/- 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2) x SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2) x SU(2), delta(pi), we are able to determine two low energy constants of chiral perturbation theory, i.e. L-8(r) = (1.0 +/- 0.3) x 10(-3), and H-2(r) = -(4.7 +/- 0.6) x 10(-3), both at the scale of the rho-meson mass.
|
Castorina, E., Franca, U., Lattanzi, M., Lesgourgues, J., Mangano, G., Melchiorri, A., et al. (2012). Cosmological lepton asymmetry with a nonzero mixing angle theta(13). Phys. Rev. D, 86(2), 023517–11pp.
Abstract: While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle theta(13), and show that for large theta(13) the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from big bang nucleosynthesis, while the limits on the total neutrino mass from cosmological data are essentially independent of theta(13). Finally, we perform a forecast for Cosmic Origins Explorer, taken as an example of a future cosmic microwave background experiment, and find that it could improve the limits on the total lepton asymmetry approximately by up to a factor 6.6.
|
Fornengo, N., Lineros, R. A., Regis, M., & Taoso, M. (2012). Cosmological radio emission induced by WIMP Dark Matter. J. Cosmol. Astropart. Phys., 03(3), 033–27pp.
Abstract: We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.
|
Kleiss, R. H. P., Malamos, I., Papadopoulos, C. G., & Verheyen, R. (2012). Counting to one: reducibility of one- and two-loop amplitudes at the integrand level. J. High Energy Phys., 12(12), 038–24pp.
Abstract: Calculation of amplitudes in perturbative quantum field theory involve large loop integrals. The complexity of those integrals, in combination with the large number of Feynman diagrams, make the calculations very difficult. Reduction methods proved to be very helpful, lowering the number of integrals that need to be actually calculated. Especially reduction at the integrand level improves the speed and set-up of these calculations. In this article we demonstrate, by counting the numbers of tensor structures and independent coefficients, how to write such relations at the integrand level for one-and two-loop amplitudes. We clarify their connection to the so-called spurious terms at one loop and discuss their structure in the two-loop case. This method is also applicable to higher loops, and the results obtained apply to both planar and non-planar diagrams.
|
Kittel, O., & Pilaftsis, A. (2012). CP violation in correlated production and decay of unstable particles. Nucl. Phys. B, 856(3), 682–697.
Abstract: We study resonant CP-violating Einstein-Podolsky-Rosen correlations that may take place in the production and decay of unstable scalar particles at high-energy colliders. We show that as a consequence of unitarity and CPT invariance of the S-matrix, in 2 -> 2 scatterings mediated by mixed scalar particles, at least three linearly independent decay matrices associated with the unstable scalar states are needed to obtain non-zero CP-odd observables that are also odd under C-conjugation. Instead, for the correlated production and decay of two unstable particle systems in 2 -> 4 processes, we find that only two independent decay matrices are sufficient to induce a net non-vanishing CP-violating phenomenon. As an application of this theorem, we present numerical estimates of CP asymmetries for the correlated production and decay of supersymmetric scalar top anti-top pairs at the LHC, and demonstrate that these could reach values of order one. As a byproduct of our analysis, we develop a novel spinorial trace technique, which enables us to efficiently evaluate lengthy expressions of squared amplitudes describing the resonant scalar transitions.
|
Hernandez, P. (2012). CP violation in the neutrino sector: The new frontier. C. R. Phys., 13(2), 186–192.
Abstract: The discovery of neutrino masses has revealed a new flavour sector in the Standard Model. Just like the quark flavour sector, it contains a seed of CP violation, resulting in an asymmetric behaviour of matter and antimatter. It is argued that this new source of leptonic CP violation may be discovered in more precise neutrino oscillation experiments involving neutrino beams with energies in the GeV range that will be sent to distances of a few thousand kilometres.
|
BABAR Collaboration(Lees, J. P. et al), Lopez-March, N., Martinez-Vidal, F., & Oyanguren, A. (2012). Cross sections for the reactions e(+)e(-) -> K+K-pi(+)pi(-), K+K-pi(0)pi(0), and K+K-K+K- measured using initial-state radiation events. Phys. Rev. D, 86(1), 012008–34pp.
Abstract: We study the processes e(+)e(-) -> K+K-pi(+)pi(-)gamma, K+K-pi(0)pi(0)gamma, and K+K-K+K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb(-1) of BABAR data. The invariantmass of the hadronic final state defines the e(+)e(-) center-of- mass energy, so that the K+K-pi(+)pi(-)gamma data can be compared with direct measurements of the e(+)e(-) -> K+K-pi(+)pi(-) reaction. No directmeasurements exist for the e(+)e(-) -> K+K-pi(0)pi(0) or e(+)e(-) -> K+K-K+K- reactions, andwe present an update of our previous result based on a data sample that is twice as large. Studying the structure of these events, we find contributions froma number of intermediate states and extract their cross sections. In particular, we perform a more detailed study of the e(+)e(-) -> phi(1020)pi pi gamma reaction and confirm the presence of the Y(2175) resonance in the phi(1020)integral(0)(980) and K+K-integral(0)(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding products of branching fraction and electron width.
|
Garcia-Recio, C., Nieves, J., Salcedo, L. L., & Tolos, L. (2012). D- mesic atoms. Phys. Rev. C, 85(2), 025203–13pp.
Abstract: The anti-D meson self-energy is evaluated self-consistently, using unitarized coupled-channel theory, by computing the in-medium meson-baryon T matrix in the C = -1, S = 0 sector. The heavy pseudo-scalar and heavy vector mesons, (D) over bar and (D) over bar*, are treated on equal footing as required by heavy-quark spin symmetry. Results for energy levels and widths of (D) over bar (-) mesic atoms in C-12, Ca-40, Sn-118, and Pb-208 are presented. The spectrum contains states of atomic and of nuclear types for all nuclei. (D) over bar (0)-nucleus bound states are also obtained. We find that, after electromagnetic and nuclear cascade, these systems end up with the (D) over bar bound in the nucleus, either as a meson or as part of an exotic (D) over barN (pentaquark) loosely bound state.
|
de Azcarraga, J. A., & Izquierdo, J. M. (2012). D=3 (p, q)-Poincare supergravities from Lie algebra expansions. Nucl. Phys. B, 854(1), 276–291.
Abstract: We use the expansion of superalgebras procedure (summarized in the text) to derive Chem-Simons (CS) actions for the (p, q)-Poincare supergravities in three-dimensional spacetimes. After deriving the action for the (p, 0)-Poincare supergravity as a CS theory for the expansion osp(p vertical bar 2: R)(2, 1) of osp(p vertical bar 2: R), we find the general (p, q)-Poincare superalgebras and their associated D = 3 supergravity actions as CS gauge theories from an expansion of the simple osp(p + q vertical bar 2, R) superalgebras, namely osp(p + q vertical bar 2, R)(2, 1, 2).
|