|
Anamiati, G., Castillo-Felisola, O., Fonseca, R. M., Helo, J. C., & Hirsch, M. (2018). High-dimensional neutrino masses. J. High Energy Phys., 12(12), 066–26pp.
Abstract: For Majorana neutrino masses the lowest dimensional operator possible is the Weinberg operator at d = 5. Here we discuss the possibility that neutrino masses originate from higher dimensional operators. Specifically, we consider all tree-level decompositions of the d = 9, d = 11 and d = 13 neutrino mass operators. With renormalizable interactions only, we find 18 topologies and 66 diagrams for d = 9, and 92 topologies plus 504 diagrams at the d = 11 level. At d = 13 there are already 576 topologies and 4199 diagrams. However, among all these there are only very few genuine neutrino mass models: At d = (9, 11, 13) we find only (2,2,2) genuine diagrams and a total of (2,2,6) models. Here, a model is considered genuine at level d if it automatically forbids lower order neutrino masses without the use of additional symmetries. We also briefly discuss how neutrino masses and angles can be easily fitted in these high-dimensional models.
|
|