|
Bernabeu, J., & Martinez-Vidal, F. (2015). Colloquium: Time-reversal violation with quantum-entangled B mesons. Rev. Mod. Phys., 87(1), 165–182.
Abstract: Symmetry transformations have been proven a bedrock tool for understanding the nature of particle interactions, formulating, and testing fundamental theories. Based on the up to now unbroken CPT symmetry, the violation of the CP symmetry between matter and antimatter by weak interactions, discovered in the decay of kaons in 1964 and observed more recently in 2001 in B mesons, strongly suggests that the behavior of these particles under weak interactions must also be asymmetric under time reversal T. However, until recent years there has not been a direct detection of the expected time-reversal violation in the time evolution of any system. This Colloquium examines the field of time-reversal symmetry breaking in the fundamental laws of physics. For transitions, its observation requires an asymmetry with exchange of initial and final states. A discussion is given of the conceptual basis for such an exchange with unstable particles, using the quantum properties of Einstein-Podolsky-Rosen entanglement available at B meson factories combined with the decay as a filtering measurement. The method allows a clear-cut separation of different transitions between flavor and CP eigenstates in the decay of neutral B mesons. These ideas have been implemented for the experiment by the BABAR Collaboration at SLAC's B factory. The results, presented in 2012, prove beyond any doubt the violation of time-reversal invariance in the time evolution between these two states of the neutral B meson.
|
|
|
Cirigliano, V., Ecker, G., Neufeld, H., Pich, A., & Portoles, J. (2012). Kaon decays in the standard model. Rev. Mod. Phys., 84(1), 399–447.
Abstract: A comprehensive overview of kaon decays is presented. The standard model predictions are discussed in detail, covering both the underlying short-distance electroweak dynamics and the important interplay of QCD at long distances. Chiral perturbation theory provides a universal framework for treating leptonic, semileptonic, and nonleptonic decays including rare and radiative modes. All allowed decay modes with branching ratios of at least 10 (11) are analyzed. Some decays with even smaller rates are also included. Decays that are strictly forbidden in the standard model are not considered in this review. The present experimental status and the prospects for future improvements are reviewed.
|
|
|
Kogler, R., Nachman, B., Schmidt, A., Asquith, L., Winkels, E., Campanelli, M., et al. (2019). Jet substructure at the Large Hadron Collider. Rev. Mod. Phys., 91(4), 045003–44pp.
Abstract: Jet substructure has emerged to play a central role at the Large Hadron Collider, where it has provided numerous innovative ways to search for new physics and to probe the standard model, particularly in extreme regions of phase space. This review focuses on the development and use of state-of-the-art jet substructure techniques by the ATLAS and CMS experiments.
|
|