|
ANTARES Collaboration(Albert, A. et al), Alves, S., Carretero, V., Colomer, M., Gozzini, R., Hernandez-Rey, J. J., et al. (2021). Measurement of the atmospheric nu(e) and nu(mu) energy spectra with the ANTARES neutrino telescope. Phys. Lett. B, 816, 136228–7pp.
Abstract: This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.
|
|
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., Tönnis, C., et al. (2017). Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Phys. Lett. B, 769, 249–254.
Abstract: Using data recorded with the ANTARES telescope from 2007 to 2015, a new search for dark matter annihilation in the Milky Way has been performed. Three halo models and five annihilation channels, WIMP + WIMP -> b (b) over bar, W+W-, tau(+)tau(-), mu(+)mu(-) and v (v) over bar, with WIMP masses ranging from 50 2 GeV/C-2 to 100 Tev/C-2, were considered. No excess over the expected background was found, and limits on the thermally averaged annihilation cross-section were set.
|
|
|
ANTARES Collaboration(Albert, A. et al), Colomer, M., Gozzini, R., Hernandez-Rey, J. J., Illuminati, G., Khan-Chowdhury, N. R., et al. (2020). Search for dark matter towards the Galactic Centre with 11 years of ANTARES data. Phys. Lett. B, 805, 135439–6pp.
Abstract: Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in the Northern Hemisphere, is able to perform a complementary search looking towards the Galactic Centre, where a high density of dark matter is thought to accumulate. Both this directional information and the spectral features of annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like signals in ANTARES data. Results obtained upon unblinding 3170 days of data reconstructed with updated methods are presented, which provides a larger, and more accurate, data set than a previously published result using 2101 days. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair annihilation.
|
|
|
Antusch, S., Figueroa, D. G., Marschall, K., & Torrenti, F. (2020). Energy distribution and equation of state of the early Universe: Matching the end of inflation and the onset of radiation domination. Phys. Lett. B, 811, 135888–7pp.
Abstract: We study the energy distribution and equation of state of the universe between the end of inflation and the onset of radiation domination (RD), considering observationally consistent single-field inflationary scenarios, with a potential 'flattening' at large field values, and a monomial shape V(phi) proportional to vertical bar phi vertical bar(p) around the origin. As a proxy for (p)reheating, we include a quadratic interaction g(2)phi X-2(2) between the inflaton phi and a light scalar 'daughter' field X, with g(2) > 0. We capture the non-perturbative and non-linear nature of the system dynamics with lattice simulations, obtaining that: i) the final energy transferred to X depends only on p, not on g(2); ii) the final transfer of energy is always negligible for 2 <= p < 4, and of order similar to 50% for p >= 4; iii) the system goes at late times to matter-domination for p = 2, and always to RD for p > 2. In the latter case we calculate the number of e-folds until RD, significantly reducing the uncertainty in the inflationary observables Tl-s and r.
|
|
|
Araujo Filho, A. A., Zare, S., Porffrio, P. J., Kriz, J., & Hassanabadi, H. (2023). Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory. Phys. Lett. B, 838, 137744–9pp.
Abstract: In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.
|
|
|
Araujo, M. C., Furtado, J., & Maluf, R. V. (2023). Lorentz-violating extension of scalar QED at finite temperature. Phys. Lett. B, 844, 138064–6pp.
Abstract: In this work, we calculate the one-loop self-energy corrections to the gauge field in scalar electrodynamics modified by Lorentz-violating terms within the framework of the standard model extension (SME). We focus on both CP T-even and CP T-odd contributions. The kinetic part of the scalar sector contains a CP T-even symmetric Lorentz-breaking tensor, and the interaction terms include a vector contracted with the usual covariant derivative in a gauge-invariant manner. We computed the one-loop radiative corrections using dimensional regularization for both the CP T-even and CP T-odd cases. Additionally, we employed the Matsubara formalism to account for finite temperature effects.
|
|
|
Arguelles, C. A., Muñoz, V., Shoemaker, I. M., & Takhistov, V. (2022). Hadrophilic light dark matter from the atmosphere. Phys. Lett. B, 833, 137363–6pp.
Abstract: Light sub-GeV dark matter (DM) constitutes an underexplored target, beyond the optimized sensitivity of typical direct DM detection experiments. We comprehensively investigate hadrophilic light DM produced from cosmic-ray collisions with the atmosphere. The resulting relativistic DM, originating from meson decays, can be efficiently observed in variety of experiments, such as XENON1T. We include for the first time decays of eta, eta' and K+ mesons, leading to improved limits for DM masses above few hundred MeV. We incorporate an exact treatment of the DM attenuation in Earth and demonstrate that nuclear form factor effects can significantly impact the resulting testable DM parameter space. Further, we establish projections for upcoming experiments, such as DARWIN, over a wide range of DM masses below the GeV scale.
|
|
|
Aristizabal Sierra, D., De Romeri, V., Flores, L. J., & Papoulias, D. K. (2020). Light vector mediators facing XENON1T data. Phys. Lett. B, 809, 135681–5pp.
Abstract: Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about 2-3 keV. With an exposure of 0.65 tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by pp neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below less than or similar to 0.1 MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.
|
|
|
Athenodorou, A., Binosi, D., Boucaud, P., De Soto, F., Papavassiliou, J., Rodriguez-Quintero, J., et al. (2016). On the zero crossing of the three-gluon vertex. Phys. Lett. B, 761, 444–449.
Abstract: We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2021). Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector. Phys. Lett. B, 816, 136204–28pp.
Abstract: The associated production of a Higgs boson with a W or Z boson decaying into leptons and where the Higgs boson decays to a b (b) over bar pair is measured in the high vector-boson transverse momentum regime, above 250 GeV, with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 139 fb(-1), were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of root s = 13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.72(-0.36)(+0.39) corresponding to an observed (expected) significance of 2.1 (2.7) standard deviations. Cross-sections of associated production of a Higgs boson decaying into b quark pairs with a W or Z gauge boson, decaying into leptons, are measured in two exclusive vector boson transverse momentum regions, 250-400 GeV and above 400 GeV, and interpreted as constraints on anomalous couplings in the framework of a Standard Model effective field theory.
|
|