Vitez-Sveiczer, A. et al, Algora, A., Morales, A. I., Rubio, B., Agramunt, J., Guadilla, V., et al. (2022). The beta-decay of Kr-70 into Br-70: Restoration of the pseudo-SU(4) symmetry. Phys. Lett. B, 830, 137123–8pp.
Abstract: The beta-decay of the even-even nucleus Kr-70 with Z=N+2, has been investigated at the Radioactive Ion Beam Factory (RIBF) of the RIKEN Nishina Center using the BigRIPS fragment separator, the ZeroDegree Spectrometer, the WAS3ABI implantation station and the EURICA HPGe cluster array. Fifteen gamma-rays associated with the beta-decay of( 70)Kr into Br-70 have been identified for the first time, defining ten populated states below E-exc=3300 keV. The half-life of Kr-70 was derived with increased precision and found to be t(1/2)=45.19 +/- 0.14 ms. The beta-delayed proton emission probability has also been determined as epsilon(p)=0.545(23)%. An increase in the beta-strength to the yrast 1(+) state in comparison with the heaviest Z=N+2 system studied so far (Ge-62 decay) is observed that may indicate increased np correlations in the T=0 channel. The beta-decay strength deduced from the results is interpreted in terms of the proton-neutron quasiparticle random-phase approximation (pnQRPA) and also with a schematic model that includes isoscalar and isovector pairing in addition to quadrupole deformation. The application of this last model indicates an approximate realization of pseudo-SU(4) symmetry in this system.
|
Vijande, J., & Valcarce, A. (2014). Unraveling the pattern of the XYZ mesons. Phys. Lett. B, 736, 325–328.
Abstract: We present a plausible mechanism for the origin of the XYZ mesons in the heavy meson spectra within a standard quark-model picture. We discuss the conditions required for the existence of four-quark bound states or resonances contributing to the heavy meson spectra, being either compact or molecular. We concentrate on charmonium and bottomonium spectra, where several new states, difficult to understand as simple quark-antiquark pairs, have been reported by different experimental collaborations. The pivotal role played by entangled meson-meson thresholds is emphasized.
|
Vidaña, I., Feijoo, A., Albaladejo, M., Nieves, J., & Oset, E. (2023). Femtoscopic correlation function for the Tcc(3875)+ state. Phys. Lett. B, 846, 138201–9pp.
Abstract: We have conducted a study of the femtoscopic correlation functions for the D0D*+ and D+D*0 channels that build the Tcc state. We develop a formalism that allows us to factorize the scattering amplitudes outside the integrals in the formulas, and the integrals involve the range of the strong interaction explicitly. For a source of size of 1 fm, we find values for the correlation functions of the D0D*+ and D+D*0 channels at the origin around 30 and 2.5, respectively, and we see these observables converging to unity already for relative momenta of the order of 200 MeV. We conduct tests to see the relevance of the different contributions to the correlation function and find that it mostly provides information on the scattering length, but should the correlation functions be measured with the precision of the latest experiments, the effective range of the D0D*+ could also be obtained.
|
Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). Dynamical seesaw mechanism for Dirac neutrinos. Phys. Lett. B, 755, 363–366.
Abstract: So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.
|
Valiente-Dobon, J. J. et al, Gadea, A., & Algora, A. (2021). Manifestation of the Berry phase in the atomic nucleus Pb-213. Phys. Lett. B, 816, 136183–5pp.
Abstract: The neutron-rich Pb-213 isotope was produced in the fragmentation of a primary 1 GeV A U-238 beam, separated in FRS in mass and atomic number, and then implanted for isomer decay gamma-ray spectroscopy with the RISING setup at GSI. A newly observed isomer and its measured decay properties indicate that states in Pb-213 are characterized by the seniority quantum number that counts the nucleons not in pairs coupled to angular momentum J = 0. The conservation of seniority is a consequence of a geometric phase associated with particle-hole conjugation, which becomes observable in semi-magic nuclei where nucleons half-fill the valence shell. The gamma-ray spectroscopic observables in Pb-213 are thus found to be driven by two mechanisms, particle-hole conjugation and seniority conservation, which are intertwined through a Berry phase.
|
Valcarce, A., Garcilazo, H., & Vijande, J. (2014). Heavy baryon spectroscopy with relativistic kinematics. Phys. Lett. B, 733, 288–295.
Abstract: We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.
|
Traini, M., Rinaldi, M., Scopetta, S., & Vento, V. (2017). The effective cross section for double parton scattering within a holographic AdS/QCD approach. Phys. Lett. B, 768, 270–273.
Abstract: A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.
|
Tonev, D. et al, & Gadea, A. (2021). Transition probabilities in P-31 and S-31: A test for isospin symmetry. Phys. Lett. B, 821, 136603–6pp.
Abstract: Excited states in the mirror nuclei P-31 and S-31 were populated in the 1p and 1n exit channels of the reaction Ne-20 + C-12, at a beam energy of 33 MeV. The Ne-20 beam was delivered for the first time by the Piave-Alpi accelerator of the Laboratori Nazionali di Legnaro. Angular correlations of coincident gamma-rays and Doppler-shift attenuation lifetime measurements were performed using the multi-detector array GASP in conjunction with the EUCLIDES charged particle detector. In the observed B(E1) strengths, the isoscalar component, amounting to 24% of the isovector one, provides strong evidence for breaking of the isospin symmetry in the A = 31 mass region. Self-consistent beyond mean field calculations using Equation of Motion method based on a chiral potential and including two- and three-body forces reproduce well the experimental B(E1) strengths, reinforcing our conclusion. Coherent mixing from higher-lying states involving the Giant Isovector Monopole Resonance accounts well for the effect observed. The breaking of the isospin symmetry originates from the violation of the charge symmetry of the two- and three-body parts of the potential, only related to the Coulomb interaction.
|
Taprogge, J. et al, Gadea, A., & Montaner-Piza, A. (2014). Identification of a millisecond isomeric state in Cd-129(81) via the detection of internal conversion and Compton electrons. Phys. Lett. B, 738, 223–227.
Abstract: The decay of an isomeric state in the neutron-rich nucleus Cd-129 has been observed via the detection of internal conversion and Compton electrons providing first experimental information on excited states in this nucleus. The isomer was populated in the projectile fission of a U-238 beam at the Radioactive Isotope Beam Factory at RIKEN. From the measured yields of gamma-rays and internal conversion electrons, a multipolarity of E3 was tentatively assigned to the isomeric transition. A half-life of T-1/2 = 3.6(2) ms was determined for the new state which was assigned a spin of (21/2(+)), based on a comparison to shell model calculations performed using state-of-the-art realistic effective interactions.
|
Srivastava, R., Ternes, C. A., Tortola, M., & Valle, J. W. F. (2018). Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment. Phys. Lett. B, 778, 459–463.
Abstract: Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions.
|