D'Eramo, F., Di Valentino, E., Giare, W., Hajkarim, F., Melchiorri, A., Mena, O., et al. (2022). Cosmological bound on the QCD axion mass, redux. J. Cosmol. Astropart. Phys., 09(9), 022–35pp.
Abstract: We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.
|
Das, S., de Putter, R., Linder, E. V., & Nakajima, R. (2012). Weak lensing cosmology beyond Lambda CDM. J. Cosmol. Astropart. Phys., 11(11), 23pp.
Abstract: Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth – dynamical dark energy, extended gravity, neutrino masses, and spatial curvature – we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas tor, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ACDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies.
|
de Putter, R., Verde, L., & Jimenez, R. (2013). Testing LTB void models without the cosmic microwave background or large scale structure: new constraints from galaxy ages. J. Cosmol. Astropart. Phys., 02(2), 047–22pp.
Abstract: We present new observational constraints on inhomogenous models based on observables independent of the CMB and large-scale structure. Using Bayesian evidence we find very strong evidence for homogeneous LCDM model, thus disfavouring inhomogeneous models. Our new constraints are based on quantities independent of the growth of perturbations and rely on cosmic clocks based on atomic physics and on the local density of matter.
|
de Putter, R., Wagner, C., Mena, O., Verde, L., & Percival, W. J. (2012). Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance. J. Cosmol. Astropart. Phys., 04(4), 019–31pp.
Abstract: Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only similar to 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k < 0.2 hMpc(-1) at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc(-1). As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey geometry and confirming its validity using simulations. This may be useful as a stepping stone towards building an actual galaxy (or other tracer's) power spectrum covariance matrix.
|
De Romeri, V., Majumdar, A., Papoulias, D. K., & Srivastava, R. (2024). XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter. J. Cosmol. Astropart. Phys., 03(3), 028–34pp.
Abstract: We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.
|
De Romeri, V., Martinez-Mirave, P., & Tortola, M. (2021). Signatures of primordial black hole dark matter at DUNE and THEIA. J. Cosmol. Astropart. Phys., 10(10), 051–21pp.
Abstract: Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
|
De Romeri, V., Papoulias, D. K., Sanchez Garcia, G., Ternes, C. A., & Tortola, M. (2025). Neutrino electromagnetic properties and sterile dipole portal in light of the first solar CEνNS data. J. Cosmol. Astropart. Phys., 05(5), 080–20pp.
Abstract: Despite being neutral particles, neutrinos can acquire non-zero electromagnetic properties from radiative corrections that can be induced by the presence of new physics. Electromagnetic neutrino processes induce spectral distortions in neutrino scattering data, which are especially visible at experiments characterized by low recoil thresholds. We investigate how neutrino electromagnetic properties confront the recent indication of coherent elastic neutrino-nucleus scattering (CE nu NS) from 8B solar neutrinos in dark matter direct detection experiments. We focus on three possibilities: neutrino magnetic moments, neutrino electric charges, and the active-sterile transition magnetic moment portal. We analyze recent XENONnT and PandaX-4T data and infer the first CE nu NS-based constraints on electromagnetic properties using solar 8B neutrinos.
|
De Romeri, V., Papoulias, D. K., & Ternes, C. A. (2025). Bounds on new neutrino interactions from the first CEνNS data at direct detection experiments. J. Cosmol. Astropart. Phys., 05(5), 012–23pp.
Abstract: Recently, two dark matter direct detection experiments have announced the first indications of nuclear recoils from solar 8B neutrinos via coherent elastic neutrino-nucleus scattering (CE nu NS) with xenon nuclei. These results constitute a turning point, not only for dark matter searches that are now entering the neutrino fog, but they also bring out new opportunities to exploit dark matter facilities as neutrino detectors. We investigate the implications of recent data from the PandaX-4T and XENONnT experiments on both Standard Model physics and new neutrino interactions. We first extract information on the weak mixing angle at low momentum transfer. Then, following a phenomenological approach, we consider Lorentz-invariant interactions (scalar, vector, axial-vector, and tensor) between neutrinos, quarks and charged leptons. Furthermore, we study the U(1)B-L scenario as a concrete example of a new anomaly-free vector interaction. We find that despite the low statistics of these first experimental results, the inferred bounds are in some cases already competitive. For the scope of this work we also compute new bounds on some of the interactions using CE nu NS data from COHERENT and electron recoil data from XENONnT, LUX-ZEPLIN, PandaX-4T, and TEXONO. It seems clear that while direct detection experiments continue to take data, more precise measurements will be available, thus allowing to test new neutrino interactions at the same level or even improving over dedicated neutrino facilities.
|
De Romeri, V., Perez-Gonzalez, Y. F., & Tolino, A. (2025). Primordial black hole probes of heavy neutral leptons. J. Cosmol. Astropart. Phys., 04(4), 018–35pp.
Abstract: Primordial black holes (PBH), while still constituting a viable dark matter component, are expected to evaporate through Hawking radiation. Assuming the semi-classical approximation holds up to near the Planck scale, PBHs are expected to evaporate by the present time, emitting a significant flux of particles in their final moments, if produced in the early Universe with an initial mass of similar to 10(15) g. These “exploding” black holes will release a burst of Standard Model particles alongside any additional degrees of freedom, should they exist. We explore the possibility that heavy neutral leptons (HNL), mixing with active neutrinos, are emitted in the final evaporation stages. We perform a multimessenger analysis. We calculate the expected number of active neutrinos from such an event, including contributions due to the HNL decay for different assumptions on the mixings, that could be visible in IceCube. We also estimate the number of gamma-ray events expected at HAWC. By combining the two signals, we infer sensitivities on the active-sterile neutrino mixing and on the sterile neutrino mass. We find that, for instance, for the scenario where U(tau)4 not equal 0, IceCube and HAWC could improve current constraints by a few orders of magnitude, for HNLs masses between 0.1-1 GeV, and a PBH explosion occurring at a distance of similar to 10(-4) pc from Earth.
|
de Salas, P. F., Gariazzo, S., Laveder, M., Pastor, S., Pisanti, O., & Truong, N. (2018). Cosmological bounds on neutrino statistics. J. Cosmol. Astropart. Phys., 03(3), 050–18pp.
Abstract: We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can be obtained on neutrino statistics, disfavouring a more bosonic behaviour at less than 2 sigma.
|