|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. Eur. Phys. J. C, 79(3), 205–41pp.
Abstract: The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1 fb1 to 36.7 fb1 of pp collision data at v s = 13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-tosimulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate ismeasured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z. μmu. events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of the top quark mass in the t(t)over-bar -> lepton plus jets channel from root s=8 TeV ATLAS data and combination with previous results. Eur. Phys. J. C, 79(4), 290–51pp.
Abstract: The top quark mass is measured using a template method in the ttlepton+jets channel (lepton is e or ) using ATLAS data recorded in 2012 at the LHC. The data were taken at a proton-proton centre-of-mass energy of =8 TeV and correspond to an integrated luminosity of 20.2 fb-1. The ttlepton+jets channel is characterized by the presence of a charged lepton, a neutrino and four jets, two of which originate from bottom quarks(b). Exploiting a three-dimensional template technique, the top quark mass is determined together with a global jet energy scale factor and a relative b-to-light-jet energy scale factor. The mass of the top quark is measured to be mtop=172.08 (syst)GeV. A combination with previous ATLAS mtop measurements gives mtop=172.69 +/- 0.25 0.41 (syst) GeV.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurements of inclusive and differential fiducial cross-sections of t(t)over-bar gamma production in leptonic final states at root s=13 TeV in ATLAS. Eur. Phys. J. C, 79(5), 382–41pp.
Abstract: Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1fb-1, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one b-jet are selected. Neural network algorithms are used to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 +/- 9(stat.)+/- 41(sys.)fb and 69 +/- 3(stat.)+/- 4(sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Search for long-lived neutral particles in pp collisions at root s=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter. Eur. Phys. J. C, 79(6), 481–31pp.
Abstract: This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb-1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of W +/- Z production cross sections and gauge boson polarisation in pp collisions at root s=13 TeV with the ATLAS detector. Eur. Phys. J. C, 79(6), 535–34pp.
Abstract: This paper presents measurements of W +/- Z production cross sections in pp collisions at a centre-of-mass energy of 13TeV. The data were collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 36.1fb-1. The W +/- Z candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The measured inclusive cross section in the detector fiducial region for a single leptonic decay mode is sigma W +/- Zfid.=63.7fb, reproduced by the next-to-next-to-leading-order Standard Model prediction of 61.5-1.3+1.4fb. Cross sections for W+Z and W-Z production and their ratio are presented as well as differential cross sections for several kinematic observables. An analysis of angular distributions of leptons from decays of W and Z bosons is performed for the first time in pair-produced events in hadronic collisions, and integrated helicity fractions in the detector fiducial region are measured for the W and Z bosons separately. Of particular interest, the longitudinal helicity fraction of pair-produced vector bosons is also measured.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC. Eur. Phys. J. C, 79(5), 375–54pp.
Abstract: The performance of identification algorithms (taggers) for hadronically decaying top quarks and W bosons in pp collisions at = 13TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1fb-1 for the tt and +jet and 36.7-1 for the dijet event topologies.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton-proton collision data at s=13 TeV. Eur. Phys. J. C, 79(8), 639–40pp.
Abstract: Algorithms used for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC) are presented in this paper; these algorithms are used in ATLAS physics analyses that involve electrons in the final state and which are based on the 2015 and 2016 proton-proton collision data produced by the LHC at root s = 13 The performance of the electron reconstruction, identification, isolation, and charge identification algorithms is evaluated in data and in simulated samples using electrons from Z -> ee and J/psi -> eedecays. Typical examples of combinations of electron reconstruction, identification, and isolation operating points used in ATLAS physics analyses are shown.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of root s=13TeV with the ATLAS experiment. Eur. Phys. J. C, 79(9), 733–45pp.
Abstract: Searches for scalar leptoquarks pair-produced in proton-proton collisions at root s = 13 TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb(-1) is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first-and second-generation leptoquarks, respectively, as postulated in the minimal Buchmuller-Ruckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the Z -> ee, Z -> μμand t (t) over bar processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the Z -> ll measurements in observables sensitive to jet energies disagree with the data.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Search for excited electrons singly produced in proton-proton collisions at root s=13 TeV with the ATLAS experiment at the LHC. Eur. Phys. J. C, 79(9), 803–30pp.
Abstract: A search for excited electrons produced in pp collisions at root s = 13 TeV via a contact interaction q (q) over bar -> ee* is presented. The search uses 36.1 fb(-1) of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron into an electron and a pair of quarks (eq (q) over bar) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a W boson (nu W) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying W boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the pp -> ee* -> eeq (q) over bar and pp -> ee* -> e nu W production cross sections as a function of the excited electron mass m(e)* at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter Lambda of the model as a function of m(e)*. For m(e)* < 0.5 TeV, the lower bound for Lambda is 11 TeV. In the special case of m(e)* = Lambda, the values of m(e)* < 4.8 TeV are excluded. The presented limits on Lambda are more stringent than those obtained in previous searches.
|
|
|
ATLAS Collaboration(Aaboud, M. et al), Alvarez Piqueras, D., Aparisi Pozo, J. A., Bailey, A. J., Barranco Navarro, L., Cabrera Urban, S., et al. (2019). Measurement of W-+/-boson and Z-boson production cross-sections in pp collisions at root s=2.76 TeV with the ATLAS detector. Eur. Phys. J. C, 79(11), 901–29pp.
Abstract: The production cross-sections for W +/- and Z bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb-1 collected at a centre-ofmass energy v s = 2.76 TeV. The decay channels W and Z. are used, where can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: s tot W+ = 2312 +/- 26 (stat.) +/- 27 (syst.) +/- 72 (lumi.) +/- 30 (extr.) pb, s tot W- = 1399 +/- 21 (stat.) +/- 17 (syst.) +/- 43 (lumi.) +/- 21 (extr.) pb, s tot Z. = 323.4 +/- 9.8 (stat.) +/- 5.0 (syst.) +/- 10.0 (lumi.) +/- 5.5(extr.) pb. Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.
|
|