Amjad, M. S., Bilokin, S., Boronat, M., Doublet, P., Frisson, T., Garcia Garcia, I., et al. (2015). A precise characterisation of the top quark electro-weak vertices at the ILC. Eur. Phys. J. C, 75(10), 512–11pp.
Abstract: Top quark production in the process e(+)e(-) -> t t at a future linear electron positron collider with polarised beams is a powerful tool to determine indirectly the scale of new physics. The presented study, based on a detailed simulation of the ILD detector concept, assumes a centre-of-mass energy of root s = 500GeV and a luminosity of L = 500 fb(-1) equally shared between the incoming beam polarisations of Pe-, Pe+ = +/- 0.8, -/+ 0.3. Events are selected in which the top pair decays semi-leptonically and the cross sections and the forward-backward asymmetries are determined. Based on these results, the vector, axial vector and tensorial CP conserving couplings are extracted separately for the photon and the Z(0) component. With the expected precision, a large number of models in which the top quark acts as a messenger to new physics can be distinguished with many standard deviations. This will dramatically improve expectations from e.g. the LHC for electro-weak couplings of the top quark.
|
Andrade, I., Bazeia, D., Marques, M. A., Menezes, R., & Olmo, G. J. (2025). Analytical solutions for Maxwell-scalar system on radially symmetric spacetimes. Eur. Phys. J. C, 85(1), 27–15pp.
Abstract: We investigate Maxwell-scalar models on radially symmetric spacetimes in which the gauge and scalar fields are coupled via the electric permittivity. We find the conditions that allow for the presence of minimum energy configurations. In this formalism, the charge density must be written exclusively in terms of the components of the metric tensor and the scalar field is governed by first-order equations. We also find a manner to map the aforementioned equation into the corresponding one associated to kinks in (1, 1) spacetime dimensions, so we get analytical solutions for three specific spacetimes. We then calculate the energy density and show that the energy is finite. The stability of the solutions against contractions and dilations, following Derrick's argument, and around small fluctuations in the fields is also investigated. In this direction, we show that the solutions obeying the first-order framework are stable.
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Baret, B., Barrios-Marti, J., Hernandez-Rey, J. J., Sanchez-Losa, A., Tönnis, C., et al. (2017). Stacked search for time shifted high energy neutrinos from gamma ray bursts with the ANTARES neutrino telescope. Eur. Phys. J. C, 77(1), 20–10pp.
Abstract: A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gammaray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Bigongiari, C., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2014). A search for neutrino emission from the Fermi bubbles with the ANTARES telescope. Eur. Phys. J. C, 74(2), 2701–7pp.
Abstract: Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Bigongiari, C., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2013). Measurement of the atmospheric nu (mu) energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. Eur. Phys. J. C, 73(10), 2606–12pp.
Abstract: Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is similar to 25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma (meas)=3.58 +/- 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Colomer, M., Hernandez-Rey, J. J., Illuminati, G., et al. (2018). The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. Eur. Phys. J. C, 78(12), 1006–9pp.
Abstract: One of the main objectives of the ANTARES telescope is the search for point- like neutrino sources. Both the pointing accuracy and the angular resolution of the detector are important in this context and a reliableway to evaluate this performance is needed. In order to measure the pointing accuracy of the detector, one possibility is to study the shadow of the Moon, i. e. the deficit of the atmospheric muon flux from the direction of the Moon induced by the absorption of cosmic rays. Analysing the data taken between 2007 and 2016, theMoon shadow is observed with 3.5s statistical significance. The detector angular resolution for downwardgoing muons is 0.73. +/- 0.14.. The resulting pointing performance is consistent with the expectations. An independent check of the telescope pointing accuracy is realised with the data collected by a shower array detector onboard of a ship temporarily moving around the ANTARES location.
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Colomer, M., Hernandez-Rey, J. J., Illuminati, G., et al. (2018). Long-term monitoring of the ANTARES optical module efficiencies using K-40 decays in sea water. Eur. Phys. J. C, 78(8), 669–8pp.
Abstract: Cherenkov light induced by radioactive decay products is one of the major sources of background light for deep-sea neutrino telescopes such as ANTARES. These decays are at the same time a powerful calibration source. Using data collected by the ANTARES neutrino telescope from mid 2008 to 2017, the time evolution of the photon detection efficiency of optical modules is studied. A modest loss of only 20% in 9 years is observed. The relative time calibration between adjacent modules is derived as well.
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2017). An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope. Eur. Phys. J. C, 77(6), 419–11pp.
Abstract: A novel algorithm to reconstruct neutrino-induced particle showers within the ANTARES neutrino telescope is presented. The method achieves a median angular resolution of 6. for shower energies below 100TeV. Applying this algorithm to 6 years of data taken with theANTARES detector, 8 events with reconstructed shower energies above 10TeV are observed. This is consistent with the expectation of about 5 events from atmospheric backgrounds, but also compatible with diffuse astrophysical flux measurements by the IceCube collaboration, from which 2-4 additional events are expected. A 90% C.L. upper limit on the diffuse astrophysical neutrino flux with a value per neutrino flavour of E-2.Phi(90%) = 4.9 . 10(-8) GeV.cm(-2).s(-1).sr(-1) is set, applicable to the energy range from 23TeV to 7.8PeV, assuming an unbroken E-2 spectrum and neutrino flavour equipartition at Earth.
|
ANTARES Collaboration(Albert, A. et al), Barrios-Marti, J., Coleiro, A., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2017). All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the ANTARES neutrino telescope. Eur. Phys. J. C, 77(12), 911–7pp.
Abstract: Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. Anall-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within +/- 500 s around the GW event time nor any time clustering of events over an extended time window of +/- 3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than similar to 1.2 x 10(55) erg for a E-2 spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time.
|
ANTARES Collaboration(Albert, A. et al), Colomer, M., Gozzini, R., Hernandez-Rey, J. J., Illuminati, G., Khan-Chowdhury, N. R., et al. (2020). Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope. Eur. Phys. J. C, 80(5), 487–9pp.
Abstract: An offline search for a neutrino counterpart to gravitational -wave (GW) events detected during the second observation run (02) of Advanced-LIGO and Advanced Virgo performed with ANTARES data is presented. In addition to the search for long tracks induced by pp, (17i,) charged current interactions, a search for showering events induced by interactions of neutrinos of any flavour is conducted. The severe spatial and time coincidence provided by the gravitational -wave alert allows regions above the detector horizon to be probed, extending the ANTARES sensitivity over the entire sky. The results of this all -neutrino -flavour and all -sky time dependent analysis are presented. The search for prompt neutrino emission within 500 s around the time of six GW events yields no neutrino counterparts. Upper limits on the neutrino spectral fluence and constraints on the isotropic energy radiated via high-energy neutrinos (from a few TeV to a few tens of PeV) are set for each GW event analysed.
|