|
Alfonso, V. I., Bejarano, C., Beltran Jimenez, J., Olmo, G. J., & Orazi, E. (2017). The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields. Class. Quantum Gravity, 34(23), 235003–20pp.
Abstract: We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
|
|
|
Araujo Filho, A. A. (2024). Analysis of a regular black hole in Verlinde's gravity. Class. Quantum Gravity, 41(1), 015003–30pp.
Abstract: This work focuses on the examination of a regular black hole within Verlinde's emergent gravity, specifically investigating the Hayward-like (modified) solution. The study reveals the existence of three horizons under certain conditions, i.e. an event horizon and two Cauchy horizons. Our results indicate regions which phase transitions occur based on the analysis of heat capacity and Hawking temperature. To compute the latter quantity, we utilize three distinct methods: the surface gravity approach, Hawking radiation, and the application of the first law of thermodynamics. In the case of the latter approach, it is imperative to introduce a correction to ensure the preservation of the Bekenstein-Hawking area law. Geodesic trajectories and critical orbits (photon spheres) are calculated, highlighting the presence of three light rings. Additionally, we investigate the black hole shadows. Furthermore, the quasinormal modes are explored using third- and sixth-order Wentzel-Kramers-Brillouin approximations. In particular, we observe stable and unstable oscillations for certain frequencies. Finally, in order to comprehend the phenomena of time-dependent scattering in this scenario, we provide an investigation of the time-domain solution.
|
|
|
Araujo Filho, A. A., Furtado, J., Reis, J. A. A. S., & Silva, J. E. G. (2023). Thermodynamical properties of an ideal gas in a traversable wormhole. Class. Quantum Gravity, 40(24), 245001–20pp.
Abstract: In this work, we analyze the thermodynamic properties of non-interacting particles under influence of the gravitational field of a traversable wormhole. In particular, we investigate how the thermodynamic quantities are affected by the Ellis wormhole geometry, considering three different regions to our study: asymptotically far, close to the throat, and at the throat. The thermodynamic quantities turn out to depend strongly on parameter that controls the wormhole throat radius. By varying it, there exist an expressive modification in the thermodynamic state quantities, exhibiting both usual matter and dark energy-like behaviors. Finally, the interactions are regarded to the energy density and it seems to indicate that it “cures” the dark energy-like features.
|
|
|
Araujo Filho, A. A., Hassanabadi, H., Heidari, N., Kriz, J., & Zare, S. (2024). Gravitational traces of bumblebee gravity in metric-affine formalism. Class. Quantum Gravity, 41(5), 055003–21pp.
Abstract: This work explores various manifestations of bumblebee gravity within the metric-affine formalism. We investigate the impact of the Lorentz violation parameter, denoted as X, on the modification of the Hawking temperature. Our calculations reveal that as X increases, the values of the Hawking temperature attenuate. To examine the behavior of massless scalar perturbations, specifically the quasinormal modes, we employ the Wentzel-Kramers-Brillouin method. The transmission and reflection coefficients are determined through our calculations. The outcomes indicate that a stronger Lorentz-violating parameter results in slower damping oscillations of gravitational waves. To comprehend the influence of the quasinormal spectrum on time-dependent scattering phenomena, we present a detailed analysis of scalar perturbations in the time-domain solution. Additionally, we conduct an investigation on shadows, revealing that larger values of X correspond to larger shadow radii. Furthermore, we constrain the magnitude of the shadow radii using the EHT horizon-scale image of SgrA* . Finally, we calculate both the time delay and the deflection angle.
|
|
|
Babichev, E., & Fabbri, A. (2013). Instability of black holes in massive gravity. Class. Quantum Gravity, 30(15), 152001–7pp.
Abstract: We show that linear perturbations around the simplest black hole solution of massive bi-gravity theories, the bi-Schwarzschild solution, exhibit an unstable mode featuring the Gregory-Laflamme instability of higher dimensional black strings. The result is obtained for the massive gravity theory which is free from the Boulware-Deser ghost, as well as for its extension with two dynamical metrics. These results may indicate that static black holes in massive gravity do not exist. For the graviton mass of the order of the Hubble scale, however, the instability timescale is of order of the Hubble time.
|
|
|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Robustness of braneworld scenarios against tensorial perturbations. Class. Quantum Gravity, 32(21), 215011–10pp.
Abstract: Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
|
|
|
Bazeia, D., Losano, L., Olmo, G. J., & Rubiera-Garcia, D. (2017). Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity. Class. Quantum Gravity, 34(4), 045006–21pp.
Abstract: We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.
|
|
|
Beltran Jimenez, J., de Andres, D., & Delhom, A. (2020). Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity. Class. Quantum Gravity, 37(22), 225013–25pp.
Abstract: Among the general class of metric-affine theories of gravity, there is a special class conformed by those endowed with a projective symmetry. Perhaps the simplest manner to realise this symmetry is by constructing the action in terms of the symmetric part of the Ricci tensor. In these theories, the connection can be solved algebraically in terms of a metric that relates to the spacetime metric by means of the so-called deformation matrix that is given in terms of the matter fields. In most phenomenological applications, this deformation matrix is assumed to inherit the symmetries of the matter sector so that in the presence of an isotropic energy-momentum tensor, it respects isotropy. In this work we discuss this condition and, in particular, we show how the deformation matrix can be anisotropic even in the presence of isotropic sources due to the non-linear nature of the equations. Remarkably, we find that Eddington-inspired-Born-Infeld (EiBI) theories do not admit anisotropic deformations, but more general theories do. However, we find that the anisotropic branches of solutions are generally prone to a pathological physical behaviour.
|
|
|
Borja, E. F., Diaz-Polo, J., Garay, I., & Livine, E. R. (2010). Dynamics for a 2-vertex quantum gravity model. Class. Quantum Gravity, 27(23), 235010–34pp.
Abstract: We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.
|
|
|
Borja, E. F., Freidel, L., Garay, I., & Livine, E. R. (2011). U(N) tools for loop quantum gravity: the return of the spinor. Class. Quantum Gravity, 28(5), 055005–28pp.
Abstract: We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quantum gravity and describe the corresponding phase space in terms of spinors with the appropriate constraints. We show how its quantization leads back to the standard Hilbert space of intertwiner states defined as holomorphic functionals. We then explain how to glue these intertwiners states in order to construct spin network states as wavefunctions on the spinor phase space. In particular, we translate the usual loop gravity holonomy observables to our classical framework. Finally, we propose how to derive our phase space structure from an action principle which induces non-trivial dynamics for the spin network states. We conclude by applying explicitly our framework to states living on the simple 2-vertex graph and discuss the properties of the resulting Hamiltonian.
|
|