Home | << 1 2 3 4 >> |
![]() |
Peppa, V., Thomson, R. M., Enger, S. A., Fonseca, G. P., Lee, C. N., Lucero, J. N. E., et al. (2023). A MC-based anthropomorphic test case for commissioning model-based dose calculation in interstitial breast 192-Ir HDR brachytherapy. Med. Phys., 50(7), 4675–4687.
Abstract: PurposeTo provide the first clinical test case for commissioning of Ir-192 brachytherapy model-based dose calculation algorithms (MBDCAs) according to the AAPM TG-186 report workflow. Acquisition and Validation MethodsA computational patient phantom model was generated from a clinical multi-catheter Ir-192 HDR breast brachytherapy case. Regions of interest (ROIs) were contoured and digitized on the patient CT images and the model was written to a series of DICOM CT images using MATLAB. The model was imported into two commercial treatment planning systems (TPSs) currently incorporating an MBDCA. Identical treatment plans were prepared using a generic Ir-192 HDR source and the TG-43-based algorithm of each TPS. This was followed by dose to medium in medium calculations using the MBDCA option of each TPS. Monte Carlo (MC) simulation was performed in the model using three different codes and information parsed from the treatment plan exported in DICOM radiation therapy (RT) format. Results were found to agree within statistical uncertainty and the dataset with the lowest uncertainty was assigned as the reference MC dose distribution. Data Format and Usage NotesThe dataset is available online at ,. Files include the treatment plan for each TPS in DICOM RT format, reference MC dose data in RT Dose format, as well as a guide for database users and all files necessary to repeat the MC simulations. Potential ApplicationsThe dataset facilitates the commissioning of brachytherapy MBDCAs using TPS embedded tools and establishes a methodology for the development of future clinical test cases. It is also useful to non-MBDCA adopters for intercomparing MBDCAs and exploring their benefits and limitations, as well as to brachytherapy researchers in need of a dosimetric and/or a DICOM RT information parsing benchmark. Limitations include specificity in terms of radionuclide, source model, clinical scenario, and MBDCA version used for its preparation.
|
Perez-Calatayud, J., Ballester, F., Tedgren, C., DeWerd, L. A., Papagiannis, P., Rivard, M. J., et al. (2022). GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level. Radiother. Oncol., 176, 108–117.
Abstract: The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high-or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommen-dations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source cal-ibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments.
Keywords: Brachytherapy; High energy; Calibration; Dosimetry; HDR-PDR
|
Piriz, G. H., Gonzalez-Sprinberg, G. A., Ballester, F., & Vijande, J. (2024). Dosimetry of Large Field Valencia applicators for Cobalt-60-based brachytherapy. Med. Phys., 51, 5094–5098.
Abstract: BackgroundNon-melanoma skin cancer is one of the most common types of cancer and one of the main approaches is brachytherapy. For small lesions, the treatment of this cancer with brachytherapy can be done with two commercial applicators, one of these is the Large Field Valencia Applicators (LFVA).PurposeThe aim of this study is to test the capabilities of the LFVA to use clinically 60Co sources instead of the 192Ir ones. This study was designed for the same dwell positions and weights for both sources.MethodsThe Penelope Monte Carlo code was used to evaluate dose distribution in a water phantom when a 60Co source is considered. The LFVA design and the optimized dwell weights reported for the case of 192Ir are maintained with the only exception of the dwell weight of the central position, that was increased. 2D dose distributions, field flatness, symmetry and the leakage dose distribution around the applicator were calculated.ResultsWhen comparing the dose distributions of both sources, field flatness and symmetry remain unchanged. The only evident difference is an increase of the penumbra regions for all depths when using the 60Co source. Regarding leakage, the maximum dose within the air volume surrounding the applicator is in the order of 20% of the prescription dose for the 60Co source, but it decreases to less than 5% at about 1 cm distance.ConclusionsFlatness and symmetry remains unaltered as compared with 192Ir sources, while an increase in leakage has been observed. This proves the feasibility of using the LFVA in a larger range of clinical applications.
Keywords: dosimetry; Monte Carlo; skin brachytherapy; Valencia applicators
|
Pujades, M. C., Granero, D., Vijande, J., Ballester, F., Perez-Calatayud, J., Papagiannis, P., et al. (2014). Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities. J. Radiol. Prot., 34(4), 741–753.
Abstract: In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for Ir-192 and Co-60 HDR applications to account for several different bunker layouts. For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by Ir-192 and Co-60 will reduce the lead thickness by a factor of five for Ir-192 and ten for Co-60. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers. The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.
Keywords: bunker; shielding; NCRP 151; brachytherapy; Monte Carlo
|
Richart, J., Otal, A., Rodriguez, S., Nicolas, A. I., DePiaggio, M., Santos, M., et al. (2015). A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template. J. Contemp. Brachytherapy, 7(5), 407–414.
Abstract: Purpose: There are perineal templates for interstitial implants such as MUPIT and Syed applicators. Their limitations are the intracavitary component deficit and the necessity to use computed tomography (CT) for treatment planning since both applicators are non-magnetic resonance imaging (MRI) compatibles. To overcome these problems, a new template named Template Benidorm (TB) has been recently developed. Titanium needles are usually reconstructed based on their own artifacts, mainly in T1-weighted sequence, using the void on the tip as the needle tip position. Nevertheless, patient tissues surrounding the needles present heterogeneities that complicate the accurate identification of these artifact patterns. The purpose of this work is to improve the titanium needle reconstruction uncertainty for the TB case using a simple method based on the free needle lengths and typical MRI pellets markers. Material and methods: The proposed procedure consists on the inclusion of three small A-vitamin pellets (hyper-intense on MRI images) compressed by both applicator plates defining the central plane of the plate's arrangement. The needles used are typically 20 cm in length. For each needle, two points are selected defining the straight line. From such line and the plane equations, the intersection can be obtained, and using the free length (knowing the offset distance), the coordinates of the needle tip can be obtained. The method is applied in both T1W and T2W acquisition sequences. To evaluate the inter-observer variation of the method, three implants of T1W and another three of T2W have been reconstructed by two different medical physicists with experience on these reconstructions. Results and conclusions: The differences observed in the positioning were significantly smaller than 1 mm in all cases. The presented algorithm also allows the use of only T2W sequence either for contouring or reconstruction purposes. The proposed method is robust and independent of the visibility of the artifact at the tip of the needle.
|
Rivard, M. J., Granero, D., Perez-Calatayud, J., & Ballester, F. (2010). Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air. Med. Phys., 37(2), 869–876.
Abstract: Methods: For Ir-192, I-125, and Pd-103, the authors considered from two to five published spectra. Spherical sources approximating common brachytherapy sources were assessed. Kerma and dose results from GEANT4, MCNP5, and PENELOPE-2008 were compared for water and air. The dosimetric influence of Ir-192, I-125, and Pd-103 spectral choice was determined. Results: For the spectra considered, there were no statistically significant differences between kerma or dose results based on Monte Carlo code choice when using the same spectrum. Water-kerma differences of about 2%, 2%, and 0.7% were observed due to spectrum choice for Ir-192, I-125, and Pd-103, respectively (independent of radial distance), when accounting for photon yield per Bq. Similar differences were observed for air-kerma rate. However, their ratio (as used in the dose-rate constant) did not significantly change when the various photon spectra were selected because the differences compensated each other when dividing dose rate by air-kerma strength. Conclusions: Given the standardization of radionuclide data available from the National Nuclear Data Center (NNDC) and the rigorous infrastructure for performing and maintaining the data set evaluations, NNDC spectra are suggested for brachytherapy simulations in medical physics applications.
Keywords: biomedical materials; brachytherapy; dosimetry; iodine; iridium; Monte Carlo methods; palladium; radioisotopes
|
Valdes-Cortez, C., Ballester, F., Vijande, J., Gimenez, V., Gimenez-Alventosa, V., Perez-Calatayud, J., et al. (2020). Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya(R) unit: a Monte Carlo study. Phys. Med. Biol., 65(24), 245026–12pp.
Abstract: Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit. Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored. Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about +/- 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.
Keywords: electronic brachytherapy; eBT; dosimetry; ionization chamber; Monte Carlo
|
Valdes-Cortez, C., Mansour, I., Rivard, M. J., Ballester, F., Mainegra-Hing, E., Thomson, R. M., et al. (2021). A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations. Phys. Med. Biol., 66(10), 105014–14pp.
Abstract: Purpose. To estimate Type B uncertainties in absorbed-dose calculations arising from the different implementations in current state-of-the-art Monte Carlo (MC) codes of low-energy photon cross-sections (<200 keV). Methods. MC simulations are carried out using three codes widely used in the low-energy domain: PENELOPE-2018, EGSnrc, and MCNP. Three dosimetry-relevant quantities are considered: mass energy-absorption coefficients for water, air, graphite, and their respective ratios; absorbed dose; and photon-fluence spectra. The absorbed dose and the photon-fluence spectra are scored in a spherical water phantom of 15 cm radius. Benchmark simulations using similar cross-sections have been performed. The differences observed between these quantities when different cross-sections are considered are taken to be a good estimator for the corresponding Type B uncertainties. Results. A conservative Type B uncertainty for the absorbed dose (k = 2) of 1.2%-1.7% (<50 keV), 0.6%-1.2% (50-100 keV), and 0.3% (100-200 keV) is estimated. The photon-fluence spectrum does not present clinically relevant differences that merit considering additional Type B uncertainties except for energies below 25 keV, where a Type B uncertainty of 0.5% is obtained. Below 30 keV, mass energy-absorption coefficients show Type B uncertainties (k = 2) of about 1.5% (water and air), and 2% (graphite), diminishing in all materials for larger energies and reaching values about 1% (40-50 keV) and 0.5% (50-75 keV). With respect to their ratios, the only significant Type B uncertainties are observed in the case of the water-to-graphite ratio for energies below 30 keV, being about 0.7% (k = 2). Conclusions. In contrast with the intermediate (about 500 keV) or high (about 1 MeV) energy domains, Type B uncertainties due to the different cross-sections implementation cannot be considered subdominant with respect to Type A uncertainties or even to other sources of Type B uncertainties (tally volume averaging, manufacturing tolerances, etc). Therefore, the values reported here should be accommodated within the uncertainty budget in low-energy photon dosimetry studies.
|
Valdes-Cortez, C., Niatsetski, Y., Perez-Calatayud, J., Ballester, F., & Vijande, J. (2022). A Monte Carlo study of the relative biological effectiveness in surface brachytherapy. Med. Phys., 49, 5576–5588.
Abstract: Purpose This work aims to simulate clustered DNA damage from ionizing radiation and estimate the relative biological effectiveness (RBE) for radionuclide (rBT)- and electronic (eBT)-based surface brachytherapy through a hybrid Monte Carlo (MC) approach, using realistic models of the sources and applicators. Methods Damage from ionizing radiation has been studied using the Monte Carlo Damage Simulation algorithm using as input the primary electron fluence simulated using a state-of-the-art MC code, PENELOPE-2018. Two Ir-192 rBT applicators, Valencia and Leipzig, one Co-60 source with a Freiburg Flap applicator (reference source), and two eBT systems, Esteya and INTRABEAM, have been included in this study implementing full realizations of their geometries as disclosed by the manufacturer. The role played by filtration and tube kilovoltage has also been addressed. Results For rBT, an RBE value of about 1.01 has been found for the applicators and phantoms considered. In the case of eBT, RBE values for the Esteya system show an almost constant RBE value of about 1.06 for all depths and materials. For INTRABEAM, variations in the range of 1.12-1.06 are reported depending on phantom composition and depth. Modifications in the Esteya system, filtration, and tube kilovoltage give rise to variations in the same range. Conclusions Current clinical practice does not incorporate biological effects in surface brachytherapy. Therefore, the same absorbed dose is administered to the patients independently on the particularities of the rBT or eBT system considered. The almost constant RBE values reported for rBT support that assumption regardless of the details of the patient geometry, the presence of a flattening filter in the applicator design, or even significant modifications in the photon energy spectra above 300 keV. That is not the case for eBT, where a clear dependence on the eBT system and the characteristics of the patient geometry are reported. A complete study specific for each eBT system, including detailed applicator characteristics (size, shape, filtering, among others) and common anatomical locations, should be performed before adopting an existing RBE value.
|
Vijande, J., Ballester, F., Ouhib, Z., Granero, D., Pujades-Claumarchirant, M. C., & Perez-Calatayud, J. (2012). Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy, 11(6), 528–535.
Abstract: PURPOSE: The purpose of this work was to evaluate whether the delivered dose to the skin surface and at the prescription depth when using a Freiburg flap applicator is in agreement with the one predicted by the treatment planning system (TPS) using the TG-43 dose-calculation formalism. METHODS AND MATERIALS: Monte Carlo (MC) simulations and radiochromic film measurements have been performed to obtain dose distributions with the source located at the center of one of the spheres and between two spheres. Primary and scatter dose contributions were evaluated to understand the role played by the scatter component. A standard treatment plan was generated using MC- and TG-43-based TPS applying the superposition principle. RESULTS: The MC model has been validated by performing additional simulations in the same conditions but transforming air and Freiburg flap materials into water to match TG-43 parameters. Both dose distributions differ less than 1%. Scatter defect compared with TG-43 data is up to 15% when the source is located at the center of the sphere and up to 25% when the source is between two spheres. Maximum deviations between TPS- and MC-based distributions are of 5%. CONCLUSIONS: The deviations in the TG-43-based dose distributions for a standard treatment plan with respect to the MC dose distribution calculated taking into account the composition and shape of the applicator and the surrounding air are lower than 5%. Therefore, this study supports the validity of the TPS used in clinical practice. (C) 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Keywords: Ir-192; Brachytherapy; Dosimetry; Penelope2008; Freiburg flap
|