ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). A search for top-squark pair production, in final states containing a top quark, a charm quark and missing transverse momentum, using the 139 fb-1 of pp collision data collected by the ATLAS detector. J. High Energy Phys., 07(7), 250–49pp.
Abstract: This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and correspond to an integrated luminosity of 139 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either (t) over tilde (1) -> c (chi) over tilde (0)(1) or (t) over tilde (1) -> t (chi) over tilde (0)(1), where the (chi) over tilde (0)(1) is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of tc + E-T(miss). Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the m((t) over tilde1) vs . m((chi) over tilde (0)(1)) plane and, in addition, limits on the branching ratio of the (t) over tilde -> t (chi) over tilde (0)(1)1 decay as a function of m((t) over tilde (1)) are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM. J. High Energy Phys., 05(5), 106–57pp.
Abstract: A summary of the constraints from searches performed by the ATLAS collaboration for the electroweak production of charginos and neutralinos is presented. Results from eight separate ATLAS searches are considered, each using 140 fb(-1) of proton-proton data at a centre-of-mass energy of root s = 13TeV collected at the Large Hadron Collider during its second data-taking run. The results are interpreted in the context of the 19-parameter phenomenological minimal supersymmetric standard model, where R-parity conservation is assumed and the lightest supersymmetric particle is assumed to be the lightest neutralino. Constraints from previous electroweak, flavour and dark matter related measurements are also considered. The results are presented in terms of constraints on supersymmetric particle masses and are compared with limits from simplified models. Also shown is the impact of ATLAS searches on parameters such as the dark matter relic density and the spin-dependent and spin-independent scattering cross-sections targeted by direct dark matter detection experiments. The Higgs boson and Z boson 'funnel regions', where a low-mass neutralino would not oversaturate the dark matter relic abundance, are almost completely excluded by the considered constraints. Example spectra for non-excluded supersymmetric models with light charginos and neutralinos are also presented.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). Search for resonant production of dark quarks in the dijet final state with the ATLAS detector. J. High Energy Phys., 02(2), 128–35pp.
Abstract: This paper presents a search for a new Z' resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at root s = 13TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb(-1). After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z' to dark quarks as a function of the Z' mass for various dark-quark scenarios.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2025). Search for diphoton resonances in the 66 to 110 GeV mass range using pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 01(1), 053–45pp.
Abstract: A search is performed for light, spin-0 bosons decaying into two photons in the 66 to 110 GeV mass range, using 140 fb(-1) of proton-proton collisions at root s = 13TeV produced by the Large Hadron Collider and collected by the ATLAS detector. Multivariate analysis techniques are used to define event categories that improve the sensitivity to new resonances beyond the Standard Model. A model-independent search for a generic spin-0 particle and a model-dependent search for an additional low-mass Higgs boson are performed in the diphoton invariant mass spectrum. No significant excess is observed in either search. Mass-dependent upper limits at the 95% confidence level are set in the model-independent scenario on the fiducial cross-section times branching ratio into two photons in the range of 8 fb to 53 fb. Similarly, in the model-dependent scenario upper limits are set on the total cross-section times branching ratio into two photons as a function of the Higgs boson mass in the range of 19 fb to 102 fb.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Search for dark mesons decaying to top and bottom quarks in proton-proton collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 09(9), 005–55pp.
Abstract: A search for dark mesons originating from strongly-coupled, SU(2) dark flavor symmetry conserving models and decaying gaugephobically to pure Standard Model final states containing top and bottom quarks is presented. The search targets fully hadronic final states and final states with exactly one electron or muon and multiple jets. The analyzed data sample corresponds to an integrated luminosity of 140 fb(-1) of proton-proton collisions collected at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider. No significant excess over the Standard Model background expectation is observed and the results are used to set the first direct constraints on this type of model. The two-dimensional signal space of dark pion masses m(pi D) and dark rho-meson masses m(rho D) is scanned. For m(pi D)/m(rho D) = 0.45, dark pions with masses m(pi D)< 940 GeV are excluded at the 95% CL, while for m(pi D)/m(rho D) = 0.25 masses m(pi D)< 740 GeV are excluded.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Search for neutral long-lived particles that decay into displaced jets in the ATLAS calorimeter in association with leptons or jets using pp collisions at √s=13 TeV. J. High Energy Phys., 11(11), 036–52pp.
Abstract: A search for neutral long-lived particles (LLPs) decaying in the ATLAS hadronic calorimeter using 140 fb(-1) of proton-proton collisions at root s = 13TeV delivered by the LHC is presented. The analysis is composed of three channels. The first targets pair-produced LLPs, where at least one LLP is produced with sufficiently low boost that its decay products can be resolved as separate jets. The second and third channels target LLPs respectively produced in association with a W or Z boson that decays leptonically. In each channel, different search regions target different kinematic regimes, to cover a broad range of LLP mass hypotheses and models. No excesses of events relative to the background predictions are observed. Higgs boson branching fractions to pairs of hadronically decaying neutral LLPs larger than 1% are excluded at 95% confidence level for proper decay lengths in the range of 30 cm to 4.5m depending on the LLP mass, a factor of three improvement on previous searches in the hadronic calorimeter. The production of long-lived dark photons in association with a Z boson with cross-sections above 0.1 pb is excluded for dark photon mean proper decay lengths in the range of 20 cm to 50 m, improving previous ATLAS results by an order of magnitude. Finally, long-lived photo-phobic axion-like particle models are probed for the first time by ATLAS, with production cross-sections above 0.1 pb excluded in the 0.1mm to 10m range.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Search for single-production of vector-like quarks decaying into Wb in the fully hadronic final state in pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 02(2), 075–44pp.
Abstract: A search for T and Y vector-like quarks produced in proton-proton collisions at a centre-of-mass energy of 13 TeV and decaying into Wb in the fully hadronic final state is presented. The search uses 139 fb(-1) of data collected by the ATLAS detector at the LHC from 2015 to 2018. The final state is characterised by a hadronically decaying W boson with large Lorentz boost and a b-tagged jet, which are used to reconstruct the invariant mass of the vector-like quark candidate. The main background is QCD multijet production, which is estimated using a data-driven method. Upon finding no significant excess in data, mass limits at 95% confidence level are obtained as a function of the global coupling parameter, kappa. The observed lower limits on the masses of Y quarks with kappa = 0.5 and kappa = 0.7 are 2.0 TeV and 2.4 TeV, respectively. For T quarks, the observed mass limits are 1.4 TeV for kappa = 0.5 and 1.9 TeV for kappa = 0.7.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Measurements of electroweak W±Z boson pair production in association with two jets in pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 06(6), 192–55pp.
Abstract: Measurements of integrated and differential cross-sections for electroweak WZ production in association with two jets (W(+/-)Zjj) in proton-proton collisions are presented. The data collected by the ATLAS detector at the Large Hadron Collider from 2015 to 2018 at a centre-of-mass energy of root s = 13 TeV are used, corresponding to an integrated luminosity of 140 fb(-1). The W(+/-)Zjj candidate events are reconstructed using leptonic decay modes of the gauge bosons. Events containing three identified leptons, either electrons or muons, and two jets are selected. Processes involving pure electroweak W(+/-)Zjj production at Born level are separated from W(+/-)Zjj production involving a strong coupling. The measured integrated fiducial cross-section of electroweak W(+/-)Zjj production per lepton flavour is sigma(WZjj-EW -> l 'nu lljj) = 0.368 +/- 0.037 (stat.) +/- 0.059 (syst.) +/- 0.003 (lumi.) fb, where l and l ' are either an electron or a muon. Respective cross-sections of electroweak and strong W(+/-)Zjj production are measured separately for events with exactly two jets or with more than two jets, and in three bins of the invariant mass of the two jets. The inclusive W(+/-)Zjj production cross-section, without separating electroweak and strong production, is also measured to be sigma(WZjj -> l 'nu lljj) = 1.462 +/- 0.063 (stat.) +/- 0.118 (syst.) +/- 0.012 (lumi.) fb, per lepton flavour. The inclusive W(+/-)Zjj production cross-section is measured differentially for several kinematic observables. Finally, the measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators.
|
ATLAS Collaboration(Aad, G. et al), Akiot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2023). Search for magnetic monopoles and stable particles with high electric charges in √s=13 TeV pp collisions with the ATLAS detector. J. High Energy Phys., 11(11), 112–45pp.
Abstract: We present a search for magnetic monopoles and high-electric-charge objects using LHC Run 2 root s = 13TeV proton-proton collisions recorded by the ATLAS detector. A total integrated luminosity of 138 fb(-1) was collected by a specialized trigger. No highly ionizing particle candidate was observed. Considering the Drell-Yan and photon-fusion pair production mechanisms as benchmark models, cross-section upper limits are presented for spin-0 and spin-1/2 magnetic monopoles of magnetic charge 1g(D) and 2g(D) and for high-electric-charge objects of electric charge 20 <= vertical bar z vertical bar <= 100, for masses between 200 GeV and 4000 GeV. The search improves by approximately a factor of three the previous cross-section limits on the Drell-Yan production of magnetic monopoles and high-electric charge objects. Also, the first ATLAS limits on the photon-fusion pair production mechanism of magnetic monopoles and high-electric-charge objects are obtained.
|
ATLAS Collaboration(Aad, G. et al), Akiot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2023). Search for vector-boson resonances decaying into a top quark and a bottom quark using pp collisions at √s=13 TeV with the ATLAS detector. J. High Energy Phys., 12(12), 073–63pp.
Abstract: A search for a new massive charged gauge boson, W ', is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of root s = 13 TeV, and corresponds to an integrated luminosity of 139 fb(-1). The reconstructed tb invariant mass is used to search for a W ' boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a W ' boson with purely right-handed or left-handed chirality in a mass range of 0.5-6 TeV. Different values for the coupling of the W ' boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the s-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the W ' -> tb production cross-section times branching ratio as a function of the W '-boson mass and in the plane of the coupling vs the W '-boson mass.
|