
Bach, M., Park, J. H., Stockinger, D., & StockingerKim, H. (2015). Large muon (g2) with TeVscale SUSY masses for tan beta > infinity. J. High Energy Phys., 10(10), 026–27pp.
Abstract: The muon anomalous magnetic moment a(mu) is investigated in the MSSM for tan beta > infinity. This is an attractive example of radiative muon mass generation with completely different qualitative parameter dependence compared to the MSSM with the usual, finite tan beta. The observed, positive difference between the experimental and Standard Model values can only be explained if there are mass splittings, such that bino contributions dominate over wino ones. The two most promising cases are characterized either by large Higgsino mass μor by large lefthanded smuon mass m(L). The required mass splittings and the resulting a(mu)(SUSY) are studied in detail. It is shown that the current discrepancy in a(mu) can be explained even in cases where all SUSY masses are at the TeV scale. The paper also presents useful analytical formulas, approximations for limiting cases, and benchmark points.



Balazs, C. et al, Mamuzic, J., & Ruiz de Austri, R. (2021). A comparison of optimisation algorithms for highdimensional particle and astrophysics applications. J. High Energy Phys., 05(5), 108–46pp.
Abstract: Optimisation problems are ubiquitous in particle and astrophysics, and involve locating the optimum of a complicated function of many parameters that may be computationally expensive to evaluate. We describe a number of global optimisation algorithms that are not yet widely used in particle astrophysics, benchmark them against random sampling and existing techniques, and perform a detailed comparison of their performance on a range of test functions. These include four analytic test functions of varying dimensionality, and a realistic example derived from a recent global fit of weakscale supersymmetry. Although the best algorithm to use depends on the function being investigated, we are able to present general conclusions about the relative merits of random sampling, Differential Evolution, Particle Swarm Optimisation, the Covariance Matrix Adaptation Evolution Strategy, Bayesian Optimisation, Grey Wolf Optimisation, and the PyGMO Artificial Bee Colony, Gaussian Particle Filter and Adaptive Memory Programming for Global Optimisation algorithms.



Bruhnke, M., Herrmann, B., & Porod, W. (2010). Signatures of bosonic squark decays in nonminimally flavourviolating supersymmetry. J. High Energy Phys., 09(9), 006–35pp.
Abstract: We investigate couplings of squarks to gauge and Higgsbosons within the framework of nonminimal flavour violation in the Minimal Supersymmetric Standard Model. Introducing nondiagonal elements in the mass matrices of squarks, we first study their impact on the selfenergies and physical mass eigenvalues of squarks. We then present an extensive analysis of bosonic squark decays for variations of the flavourviolating parameters around the two benchmark scenarios SPS1a' and SPS1b. Signatures, that would be characteristic for a nonminimal flavour structure in the squark sector, can be found in wide regions of the parameter space.



Cabrera, M. E., Casas, A., Ruiz de Austri, R., & Bertone, G. (2014). LHC and dark matter phenomenology of the NUGHM. J. High Energy Phys., 12(12), 114–39pp.
Abstract: We present a Bayesian analysis of the NUGHM, a supersymmetric scenario with nonuniversal gaugino masses and Higgs masses, including all the relevant experimental observables and dark matter constraints. The main merit of the NUGHM is that it essentially includes all the possibilities for dark matter (DM) candidates within the MSSM, since the neutralino and chargino spectrum and composition are as free as they can be in the general MSSM. We identify the most probable regions in the NUHGM parameter space, and study the associated phenomenology at the LHC and the prospects for DM direct detection. Requiring that the neutralino makes all of the DM in the Universe, we identify two preferred regions around m(chi 10) = 1 TeV, 3 TeV, which correspond to the (almost) pure Higgsino and wino case. There exist other marginal regions (e.g. Higgsfunnel), but with much less statistical weight. The prospects for detection at the LHC in this case are quite pessimistic, but future direct detection experiments like LUX and XENON1T, will be able to probe this scenario. In contrast, when allowing other DM components, the prospects for detection at the LHC become more encouraging – the most promising signals being, beside the production of gluinos and squarks, the production of the heavier chargino and neutralino states, which lead to WZ and samesign WW final states – and direct detection remains a complementary, and even more powerful, way to probe the scenario.



Cabrera, M. E., Casas, J. A., Delgado, A., Robles, S., & Ruiz de Austri, R. (2016). Naturalness of MSSM dark matter. J. High Energy Phys., 08(8), 058–30pp.
Abstract: There exists a vast literature examining the electroweak (EW) finetuning problem in supersymmetric scenarios, but little concerned with the dark matter (DM) one, which should be combined with the former. In this paper, we study this problem in an, as much as possible, exhaustive and rigorous way. We have considered the MSSM framework, assuming that the LSP is the lightest neutralino, chi(0)(1), and exploring the various possibilities for the mass and composition of chi(0)(1), as well as different mechanisms for annihilation of the DM particles in the early Universe (welltempered neutralinos, funnels and coannihilation scenarios). We also present a discussion about the statistical meaning of the finetuning and how it should be computed for the DM abundance, and combined with the EW finetuning. The results are very robust and modelindependent and favour some scenarios (like the hfunnel when Mchi 10 is not too close to m(h)/2) with respect to others (such as the pure wino case). These features should be taken into account when one explores “natural SUSY” scenarios and their possible signatures at the LHC and in DM detection experiments.



Cabrera, M. E., Casas, J. A., & Ruiz de Austri, R. (2013). The health of SUSY after the Higgs discovery and the XENON100 data. J. High Energy Phys., 07(7), 182–47pp.
Abstract: We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1TeV. We do not incorporate ad hoc measures of the finetuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very finetuned. We use Bayesian techniques to show the experimental Higgs mass is at similar to 2 sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high.



Chala, M., Delgado, A., Nardini, G., & Quiros, M. (2017). A light sneutrino rescues the light stop. J. High Energy Phys., 04(4), 097–22pp.
Abstract: Stop searches in supersymmetric frameworks with Rparity conservation usually assume the lightest neutralino to be the lightest supersymmetric particle. In this paper we consider an alternative scenario in which the lefthanded tau sneutrino is lighter than neutralinos and stable at collider scales, but possibly unstable at cosmological scales. Moreover the (mostly righthanded) stop (t) over tilde is lighter than all electroweakinos, and heavier than the scalars of the third generation lepton doublet, whose charged component, (T) over tilde, is heavier than the neutral one, (v) over tilde. The remaining supersymmetric particles are decoupled from the stop phenomenology. In most of the parameter space, the relevant stop decays are only into t (T) over tildeT, t (v) over tildev and b (v) over tildeT via offshell electroweakinos. We constrain the branching ratios of these decays by recasting the most sensitive stop searches. Due to the “double invisible” kinematics of the (t) over tilde > t (v) over tildev process, and the low efficiency in tagging the t (T) over tildeT decay products, light stops are generically allowed. In the minimal supersymmetric standard model with similar to 100 GeV sneutrinos, stops with masses as small as similar to 350 GeV turn out to be allowed at 95% CL.



De Romeri, V., & Hirsch, M. (2012). Sneutrino dark matter in lowscale seesaw scenarios. J. High Energy Phys., 12(12), 106–28pp.
Abstract: We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z' and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z' due to the experimental bounds on the direct detection scattering cross section.



Ellis, J., Gomez, M. E., Lola, S., Ruiz de Austri, R., & Shafi, Q. (2020). Confronting grand unification with lepton flavour violation, dark matter and LHC data. J. High Energy Phys., 09(9), 197–29pp.
Abstract: We explore possible signatures for charged lepton flavour violation (LFV), sparticle discovery at the LHC and dark matter (DM) searches in grand unified theories (GUTs) based on SU(5), flipped SU(5) (FSU(5)) and SU(4)(c) x SU(2)(L) x SU(2)(R) (422). We assume that soft supersymmetrybreaking terms preserve the group symmetry at some high input scale, and focus on the nonuniversal effects on different matter representations generated by gauge interactions at lower scales, as well as the charged LFV induced in Type1 seesaw models of neutrino masses. We identify the different mechanisms that control the relic DM density in the various GUT models, and contrast their LFV and LHC signatures. The SU(5) and 422 models offer good detection prospects both at the LHC and in LFV searches, though with different LSP compositions, and the SU(5) and FSU(5) models offer LFV within the current reach. The 422 model allows chargino and gluino coannihilations with neutralinos, and the former offer good detection prospects for both the LHC and LFV, while gluino coannihilations lead to lower LFV rates. Our results indicate that LFV is a powerful tool that complements LHC and DM searches, providing significant insights into the sparticle spectra and neutrino mass parameters in different models.



Esteves, J. N., Romao, J. C., Hirsch, M., Porod, W., Staub, F., & Vicente, A. (2012). Dark matter and LHC phenomenology in a leftright supersymmetric model. J. High Energy Phys., 01(1), 095–33pp.
Abstract: Leftright symmetric extensions of the Minimal Supersymmetric Standard Model can explain neutrino data and have potentially interesting phenomenology beyond that found in minimal SUSY seesaw models. Here we study a SUSY model in which the leftright symmetry is broken by triplets at a high scale, but significantly below the GUT scale. Sparticle spectra in this model differ from the usual constrained MSSM expectations and these changes affect the relic abundance of the lightest neutralino. We discuss changes for the standard stau (and stop) coannihilation, the Higgs funnel and the focus point regions. The model has potentially large lepton flavour violation in both, left and right, scalar leptons and thus allows, in principle, also for flavoured coannihilation. We also discuss lepton flavour signals due to violating decays of the second lightest neutralino at the LHC, which can be as large as 20 fb(1) at root s = 14 TeV.

