Alioli, S., Fuster, J., Garzelli, M. V., Gavardi, A., Irles, A., Melini, D., et al. (2022). Phenomenology of t(t)over-barj plus X production at the LHC. J. High Energy Phys., 05(5), 146–63pp.
Abstract: We present phenomenological results for t (t) over barj + X production at the Large Hadron Collider, of interest for designing forthcoming experimental analyses of this process. We focus on those cases where the t (t) over barj + X process is considered as a signal. We discuss present theoretical uncertainties and the dependence on relevant input parameters entering the computation. For the R. distribution, which depends on the invariant mass of the t (t) over barj-system, we present reference predictions in the on-shell, (MS) over bar and MSR top-quark mass renormalization schemes, applying the latter scheme to this process for the first time. Our conclusions are particularly interesting for those analyses aiming at extracting the topquark mass from cross-section measurements.
|
Alvarez, M., Cantero, J., Czakon, M., Llorente, J., Mitov, A., & Poncelet, R. (2023). NNLO QCD corrections to event shapes at the LHC. J. High Energy Phys., 03(3), 129–24pp.
Abstract: In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.
|
Belov, I., Giachino, A., & Santopinto, E. (2025). Fully charmed tetraquark production at the LHC experiments. J. High Energy Phys., 01(1), 093–29pp.
Abstract: We develop the formalism for production of a fully heavy tetraquark and apply it to the calculation of pp -> T4c + X cross-sections. We demonstrate that the production cross-section of a fully heavy tetraquark, even if it is a diquark-antidiquark cluster, can be obtained in the meson-like basis, for which the spin-color projection technique is well established. Prompted by the recent LHCb, ATLAS and CMS data, we perform a pQCD calculation of O(alpha s5) short-distance factors in the dominant channel of gluon fusion, and match these to the four-body T4c wave functions in order to obtain the unpolarized T4c(0++, 1+-, 2++) cross-sections. The novelty in comparison with the recently published article [1] lies in the fact that we predict the absolute values as well as the d sigma/dpT spectra in the kinematic ranges accessible at the ongoing LHC experiments. From the comparison with the signal yield at LHCb we derive the constraints on the Phi <middle dot> Br(J/psi J/psi) (reduced wave function times branching) product for the T4c candidates for X(6900) and observe that X(6900) is compatible with a 2++(2S) state.
|
Jueid, A., Kip, J., Ruiz de Austri, R., & Skands, P. (2024). The Strong Force meets the Dark Sector: a robust estimate of QCD uncertainties for anti-matter dark matter searches. J. High Energy Phys., 02(2), 119–48pp.
Abstract: In dark-matter annihilation channels to hadronic final states, stable particles – such as positrons, photons, antiprotons, and antineutrinos – are produced via complex sequences of phenomena including QED/QCD radiation, hadronisation, and hadron decays. These processes are normally modelled by Monte Carlo (MC) event generators whose limited accuracy imply intrinsic QCD uncertainties on the predictions for indirect-detection experiments like Fermi-LAT, Pamela, IceCube or Ams-02. In this article, we perform a comprehensive analysis of QCD uncertainties, meaning both perturbative and nonperturbative sources of uncertainty are included – estimated via variations of MC renormalization-scale and fragmentation-function parameters, respectively – in antimatter spectra from dark-matter annihilation, based on parametric variations of the Pythia 8 event generator. After performing several retunings of light-quark fragmentation functions, we define a set of variations that span a conservative estimate of the QCD uncertainties. We estimate the effects on antimatter spectra for various annihilation channels and final-state particle species, and discuss their impact on fitted values for the dark-matter mass and thermally-averaged annihilation cross section. We find dramatic impacts which can go up to O(10%) for the annihilation cross section. We provide the spectra in tabulated form including QCD uncertainties and code snippets to perform fast dark-matter fits, in this github repository.
|
Pich, A., & Rodriguez-Sanchez, A. (2022). Violations of quark-hadron duality in low-energy determinations of alpha(s). J. High Energy Phys., 07(7), 145–42pp.
Abstract: Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.
|