|
Abdallah, J. et al, Cerda Alberich, L., Fiorini, L., Gomez Delegido, A. J., & Valero, A. (2025). Study of the radiation hardness of the ATLAS Tile Calorimeter optical instrumentation with Run 2 data. J. Instrum., 20(6), P06006–29pp.
Abstract: This paper presents a study of the radiation hardness of the hadronic Tile Calorimeter of the ATLAS experiment in the LHC Run 2. Both the plastic scintillators constituting the detector active media and the wavelength-shifting optical fibres collecting the scintillation light into the photodetector readout are elements susceptible to radiation damage. The dedicated calibration and monitoring systems of the detector (caesium radioactive sources, laser and minimum bias integrator) allow to assess the response of these optical components. Data collected with these systems between 2015 and 2018 are analysed to measure the degradation of the optical instrumentation across Run 2. Moreover, a simulation of the total ionising dose in the calorimeter is employed to study and model the degradation profile as a function of the exposure conditions, both integrated dose and dose rate. The measurement of the relative light output loss in Run 2 is presented and extrapolations to future scenarios are drawn based on current data. The impact of radiation damage on the cell response uniformity is also analysed.
|
|
|
ATLAS Collaboration(Aad, G. et al), Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., et al. (2022). Operation and performance of the ATLAS semiconductor tracker in LHC Run 2. J. Instrum., 17(1), P01013–56pp.
Abstract: The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015-2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb(-1) to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. '
|
|
|
ATLAS Collaboration(Aad, G. et al), Aparisi Pozo, J. A., Bailey, A. J., Cabrera Urban, S., Cardillo, F., Castillo, F. L., et al. (2021). Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents. J. Instrum., 16(8), P08025–46pp.
Abstract: Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010-2012) and Run 2 (2015-2018) of the Large Hadron Collider. The extracted fluence shows a much stronger vertical bar z vertical bar-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.
|
|