Guadilla, V. et al, Algora, A., Tain, J. L., Agramunt, J., Jordan, D., Monserrate, M., et al. (2017). Characterization of a cylindrical plastic beta-detector with Monte Carlo simulations of optical photons. Nucl. Instrum. Methods Phys. Res. A, 854, 134–138.
Abstract: In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic beta-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption gamma-ray spectroscopy analysis.
|
KM3NeT Collaboration(Adrian-Martinez, S. et al), Barrios-Marti, J., Calvo, D., Hernandez-Rey, J. J., Illuminati, G., Lotze, M., et al. (2016). A method to stabilise the performance of negatively fed KM3NeT photomultipliers. J. Instrum., 11, P12014–12pp.
Abstract: The KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulation.
|
KM3NeT Collaboration(Aiello, S. et al), Barrios-Marti, J., Calvo, D., Coleiro, A., Colomer, M., Gozzini, S. R., et al. (2018). Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. J. Instrum., 13, P05035–17pp.
Abstract: The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Study of exclusive photoproduction of charmonium in ultra-peripheral lead-lead collisions. J. High Energy Phys., 06(6), 146–25pp.
Abstract: The cross-sections of exclusive (coherent) photoproduction J/psi and (2S) mesons in ultra-peripheral PbPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02TeV are measured using a data sample corresponding to an integrated luminosity of 228 +/- 10 μb(-1), collected by the LHCb experiment in 2018. The differential cross-sections are measured separately as a function of transverse momentum and rapidity in the nucleus-nucleus centre-of-mass frame for J/psi and psi(2S) mesons. The integrated cross-sections are measured to be sigma(coh)(J/psi) = 5.965 +/- 0.059 +/- 0.232 +/- 0.262mb and sigma(coh)(psi(2S)) = 0.923 +/- 0.086 +/- 0.028 +/- 0.040mb, where the first listed uncertainty is statistical, the second systematic and the third due to the luminosity determination. The cross-section ratio is measured to be sigma(coh)(psi(2S)) /sigma(coh)(J/psi) = 0.155 +/- 0.014 +/- 0.003, where the first uncertainty is statistical and the second is systematic. These results are compatible with theoretical predictions.
|
Muñoz, E., Barrio, J., Bemmerer, D., Etxebeste, A., Fiedler, F., Hueso-Gonzalez, F., et al. (2018). Tests of MACACO Compton telescope with 4.44 MeV gamma rays. J. Instrum., 13, P05007–13pp.
Abstract: Hadron therapy offers the possibility of delivering a large amount of radiation dose to tumors with minimal absorption by the surrounding healthy tissue. In order to fully exploit the advantages of this technique, the use of real-time beam monitoring devices becomes mandatory. Compton imaging devices can be employed to map the distribution of prompt gamma emission during the treatment and thus assess its correct delivery. The Compton telescope prototype developed at IFIC-Valencia for this purpose is made of three layers of LaBr3 crystals coupled to silicon photomultipliers. The system has been tested in a 4.44 MeV gamma field at the 3 MV Tandetron accelerator at HZDR, Dresden. Images of the target with the system in three different positions separated by 10 mm were successfully reconstructed. This indicates the ability of MACACO for imaging the prompt gamma rays emitted at such energies.
Keywords: Compton imaging; Instrumentation for hadron therapy; Gamma detectors (scintillators, CZT, HPG, HgI etc); Photon detectors for UV, visible and IR photons (solid state) (PIN diodes, APDs, Si PMTs, G APDs, CCDs, EBCCDs, EMCCDs etc)
|
Navarro, P., Gimeno, B., Alvarez Melcon, A., Arguedas Cuendis, S., Cogollos, C., Diaz-Morcillo, A., et al. (2022). Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators. Phys. Dark Universe, 36, 101001–14pp.
Abstract: The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.
|
NEMO-3 Collaboration(Argyriades, J. et al), Diaz, J., Martin-Albo, J., Monrabal, F., Novella, P., Serra, L., et al. (2011). Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors. Nucl. Instrum. Methods Phys. Res. A, 625(1), 20–28.
Abstract: We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.
|
NEXT Collaboration(Alvarez, V. et al), Ball, M., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2013). Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment. J. Instrum., 8, T05002–18pp.
Abstract: NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the beta beta experiment. In this paper, we present a novel 3D imaging concept using SiPMs coated with tetraphenyl butadiene (TPB) for the EL read out and its first implementation in NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. The design and the first characterization measurements of the NEXT-DEMO SiPM tracking system are presented. The SiPM response uniformity over the tracking plane drawn from its gain map is shown to be better than 4%. An automated active control system for the stabilization of the SiPMs gain was developed, based on the voltage supply compensation of the gain drifts. The gain is shown to be stabilized within 0.2% relative variation around its nominal value, provided by Hamamatsu, in a temperature range of 10 degrees C. The noise level from the electronics and the SiPM dark noise is shown to lay typically below the level of 10 photoelectrons (pe) in the ADC. Hence, a detection threshold at 10 pe is set for the acquisition of the tracking signals. The ADC full dynamic range (4096 channels) is shown to be adequate for signal levels of up to 200 pe/mu s, which enables recording most of the tracking signals.
|
NEXT Collaboration(Fernandes, A. F. M. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., Diaz, J., et al. (2020). Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield. J. High Energy Phys., 04(4), 034–18pp.
Abstract: High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by similar to 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures.
|
NEXT Collaboration(Henriques, C. A. O. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., Carrion, J. V., et al. (2019). Electroluminescence TPCs at the thermal diffusion limit. J. High Energy Phys., 01(1), 027–23pp.
Abstract: The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the Xe-136 isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 for pure xenon down to 2.5 using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.
|