|
NEXT Collaboration(Alvarez, V. et al), Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., Gil, A., et al. (2014). Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture. J. Instrum., 9, P03010–22pp.
Abstract: A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of similar to 35 cm drift x 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (similar to 23 l) so as to contain long (similar to 20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%) TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging full-width half-maximum of 11.6% was obtained for similar to 29 keV gammas without resorting to any data post-processing.
|
|
|
NEXT Collaboration(Byrnes, N. K. et al), Carcel, S., Carrion, J. V., Lopez, F., Lopez-March, N., Martin-Albo, J., et al. (2023). NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout. J. Instrum., 18(8), P08006–33pp.
Abstract: The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
|
|
|
NEXT Collaboration(Cebrian, S. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2015). Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment. J. Instrum., 10, P05006–16pp.
Abstract: The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8 x 10(-4) counts keV(-1) kg(-1) y(-1), have been identified.
|
|
|
NEXT Collaboration(Haefner, J. et al), Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., Martin-Albo, J., Martinez-Vara, M., et al. (2023). Reflectance and fluorescence characteristics of PTFE coated with TPB at visible, UV, and VUV as a function of thickness. J. Instrum., 18(3), P03016–21pp.
Abstract: Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. In noble element systems, it is often coated with tetraphenyl butadiene (TPB) to allow detection of vacuum ultraviolet scintillation light. In this work this dependence is investigated for PTFE coated with TPB in air for light of wavelengths of 200 nm, 260 nm, and 450 nm. The results show that TPB-coated PTFE has a reflectance of approximately 92% for thicknesses ranging from 5 mm to 10 mm at 450 nm, with negligible variation as a function of thickness within this range. A cross-check of these results using an argon chamber supports the conclusion that the change in thickness from 5 mm to 10 mm does not affect significantly the light response at 128 nm. Our results indicate that pieces of TPB-coated PTFE thinner than the typical 10 mm can be used in particle physics detectors without compromising the light signal.
|
|
|
NEXT Collaboration(Monrabal, F. et al), Laing, A., Alvarez, V., Benlloch-Rodriguez, J. M., Carcel, S., Carrion, J. V., et al. (2018). The NEXT White (NEW) detector. J. Instrum., 13, P12010–38pp.
Abstract: Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.
|
|
|
Poley, L., Blue, A., Bloch, I., Buttar, C., Fadeyev, V., Fernandez-Tejero, J., et al. (2019). Mapping the depleted area of silicon diodes using a micro-focused X-ray beam. J. Instrum., 14, P03024–14pp.
Abstract: For the Phase-II Upgrade of the ATLAS detector at CERN, the current ATLAS Inner Detector will be replaced with the ATLAS Inner Tracker (ITk). The ITk will be an all-silicon detector, consisting of a pixel tracker and a strip tracker. Sensors for the ITk strip tracker are required to have a low leakage current up to bias voltages of 500V to maintain a low noise and power dissipation. In order to minimise sensor leakage currents, particularly in the high-radiation environment inside the ATLAS detector, sensors are foreseen to be operated at low temperatures and to be manufactured from wafers with a high bulk resistivity of several k Omega.cm. Simulations showed the electric field inside sensors with high bulk resistivity to extend towards the sensor edge, which could lead to increased surface currents for narrow dicing edges. In order to map the electric field inside biased silicon sensors with high bulk resistivity, three diodes from ATLAS silicon strip sensor prototype wafers were studied with a monochromatic, micro-focused X-ray beam at the Diamond Light Source (Didcot, U.K.). For all devices under investigation, the electric field inside the diode was mapped and its dependence on the applied bias voltage was studied.
|
|
|
Poley, L., Stolzenberg, U., Schwenker, B., Frey, A., Gottlicher, P., Marinas, C., et al. (2021). Mapping the material distribution of a complex structure in an electron beam. J. Instrum., 16(1), P01010–33pp.
Abstract: The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.
|
|
|
Renner, J., Cervera-Villanueva, A., Hernando, J. A., Izmaylov, A., Monrabal, F., Muñoz, J., et al. (2015). Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC. J. Instrum., 10, P12020–19pp.
Abstract: We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0 nu beta beta) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0 nu beta beta decay of Xe-136) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0 nu beta beta decay (Q(beta beta)). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0 nu beta beta) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0 nu beta beta experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
|
|
|
Rizzo, G. et al, Lacasta, C., Marinas, C., Mazorra de Cos, J., & Vobbilisetti, V. (2025). The DMAPS upgrade of the Belle II Vertex Detector. Nucl. Instrum. Methods Phys. Res. A, 1072, 170164–5pp.
Abstract: The SuperKEKB collider will undergo a major upgrade at the end of the decade to reach the target luminosity of 6x1035 cm-2s-1, offering the opportunity to install a new fully pixelated vertex detector (VTX) for the Belle II experiment, based on depleted-MAPS sensors. The VTX will be more granular and robust against the expected higher level of machine background and more performant in terms of standalone track finding efficiency. The VTX baseline design includes five depleted-MAPS sensor layers, spanning radii from 14 mm to 140 mm, with a material budget ranging from 0.2% to 0.8% X/X0 per layer. All layers will be equipped with the same OBELIX sensor, designed in the TowerJazz 180 nm technology, with the pixel matrix derived from the TJ-Monopix2 sensor originally developed for the ATLAS experiment. The paper will describe the proposed VTX structure and review all project aspects: tests of the TJ-Monopix2 sensor, OBELIX-1 design status, ladder prototype fabrication and tests.
|
|
|
Salami, R. et al, Lacasta, C., Lopez, H., Platero, V., Solaz, C., & Soldevila, U. (2025). Quality concerns caused by quality control – deformation of silicon strip detector modules in thermal cycling tests. J. Instrum., 20(3), P03004–17pp.
Abstract: The ATLAS experiment at the Large Hadron Collider (LHC) is currently preparing to replace its present Inner Detector (ID) with the upgraded, all-silicon Inner Tracker (ITk) for its High-Luminosity upgrade (HL-LHC). The ITk will consist of a central pixel tracker and the outer strip tracker, consisting of about 19,000 strip detector modules. Each strip module is assembled from up to two sensors, and up to five flexes (depending on its geometry) in a series of gluing, wirebonding and quality control steps. During detector operation, modules will be cooled down to temperatures of about -35 degrees C (corresponding to the temperature of the support structures on which they will be mounted) after being initially assembled and stored at room temperature. In order to ensure compatibility with the detector's operating temperature range, modules are subjected to thermal cycling as part of their quality control process. Ten cycles between -35 degrees C and +40 degrees C are performed for each module, with full electrical characterisation tests at each high and low temperature point. As part of an investigation into the stress experienced by modules during cooling, it was observed that modules generally showed a change in module shape before and after thermal cycling. This paper presents a summary of the discovery and understanding of the observed changes, connecting them with excess module stress, as well as the resulting modifications to the module thermal cycling procedure.
|
|