ATLAS Collaboration(Aad, G. et al), Bernabeu Verdu, J., Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., et al. (2014). Operation and performance of the ATLAS semiconductor tracker. J. Instrum., 9, P08009–73pp.
Abstract: The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.
|
ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Ferrer, A., Fiorini, L., et al. (2014). A neural network clustering algorithm for the ATLAS silicon pixel detector. J. Instrum., 9, P09009–34pp.
Abstract: A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
|
ATLAS Collaboration(Abat, E. et al), Bernabeu Verdu, J., Castillo Gimenez, V., Costa, M. J., Escobar, C., Ferrer, A., et al. (2010). Combined performance studies for electrons at the 2004 ATLAS combined test-beam. J. Instrum., 5, P11006–68pp.
Abstract: In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.
|
ATLAS Collaboration(Abat, E. et al), Bernabeu Verdu, J., Castillo Gimenez, V., Costa, M. J., Escobar, C., Ferrer, A., et al. (2011). Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam. J. Instrum., 6, P04001–40pp.
Abstract: The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.
|
ATLAS TRT collaboration(Mindur, B. et al), Mitsou, V. A., & Valls Ferrer, J. A. (2016). Gas gain stabilisation in the ATLAS TRT detector. J. Instrum., 11, P04027–19pp.
Abstract: The ATLAS (one of two general purpose detectors at the LHC) Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. It is a large straw-based detector and contains about 350,000 electronics channels. The performance of the TRT as tracking and particularly particle identification detector strongly depends on stability of the operation parameters with most important parameter being the gas gain which must be kept constant across the detector volume. The gas gain in the straws can vary significantly with atmospheric pressure, temperature, and gas mixture composition changes. This paper presents a concept of the gas gain stabilisation in the TRT and describes in detail the Gas Gain Stabilisation System (GGSS) integrated into the Detector Control System (DCS). Operation stability of the GGSS during Run-1 is demonstrated.
|
Babeluk, M. et al, Lacasta, C., Marinas, C., Mazorra de Cos, J., & Vobbilisetti, V. (2024). The OBELIX chip for the Belle II VTX upgrade. Nucl. Instrum. Methods Phys. Res. A, 1067, 169659–3pp.
Abstract: The OBELIX depleted monolithic active CMOS pixel sensor (DMAPS) is currently developed for the upgrade of the vertex detector of the Belle II experiment located at Tsukuba/Japan. The pixel matrix of OBELIX is inherited from the TJ-Monopix2 chip, but the periphery includes additional features to improve performance and allow the integration into a larger detector system. The new features include a trigger unit to process trigger signals, a precision timing module and a possibility to transmit low granularity hit information with low latency to contribute to the Belle II trigger. Additionally, low dropout voltage regulators and an ADC to monitor power consumption and substrate temperature is developed. This paper will focus on the trigger contribution capabilities of the OBELIX chip.
|
Belle II VTX Collaboration(Babeluk, M. et al)., Marinas, C., & Mazorra de Cos, J. (2024). The DMAPS upgrade of the Belle II vertex detector. Nucl. Instrum. Methods Phys. Res. A, 1064, 169428–5pp.
Abstract: The Belle II experiment at KEK in Japan considers an upgrade for the vertex detector system in line with the accelerator upgrade for higher luminosity at long shutdown 2 planned for 2028. One proposal for the upgrade of the vertex detector called VTX aims to improve background robustness and reduce occupancy using small and fast pixels. VTX accommodates the OBELIX depleted monolithic active CMOS pixel sensor (DMAPS) on all five proposed layers. OBELIX is specifically developed for the VTX application and based on the TJ-Monopix2 chip initially developed to meet the requirements of the outer layers of the ATLAS inner tracker (ITk). This paper will review recent tests of the TJ-Monopix2 chip as well as various design aspects of the OBELIX-1 chip currently under development.
|
Debevc, J., Franks, M., Hiti, B., Kraemer, U., Kramberger, G., Mandic, I., et al. (2024). Measurements of time resolution of the RD50-MPW2 DMAPS prototype using TCT and 90Sr. J. Instrum., 19(5), P05068–17pp.
Abstract: Results in this paper present an in-depth study of time resolution for active pixels of the RD50-MPW2 prototype CMOS particle detector. Measurement techniques employed include Backside- and Edge-TCT configurations, in addition to electrons from a 90 Sr source. A sample irradiated to 5 <middle dot> 10 14 n eq / cm 2 was used to study the effect of radiation damage. Timing performance was evaluated for the entire pixel matrix and with positional sensitivity within individual pixels as a function of the deposited charge. Time resolution obtained with TCT is seen to be uniform throughout the pixel's central region with approx. 220 ps at 12 ke – of deposited charge, degrading at the edges and lower values of deposited charge. 90 Sr measurements show a slightly worse time resolution as a result of delayed events coming from the peripheral areas of the pixel.
|
Diez, S. et al, Bernabeu Verdu, J., Civera, J. V., Garcia, C., Garcia-Argos, C., Lacasta, C., et al. (2014). A double-sided, shield-less stave prototype for the ATLAS Upgrade strip tracker for the High Luminosity LHC. J. Instrum., 9, P03012–16pp.
Abstract: A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools.
|
Esperante-Pereira, D. (2014). DEPFET active pixel sensors for the vertex detector of the Belle-II experiment. J. Instrum., 9, C03004–11pp.
Abstract: Active pixels sensors based on the DEPFET technology will be used for the innermost vertex detector of the future Belle-II experiment. The increased luminosity of the e(+) e(-) SuperKEKB collider entails challenging detector requirements, namely: low material budget, low power consumption, high precision and efficiency, and a large readout rate. The DEPFET active pixel technology has shown to be a suitable solution for this purpose. A review of the different aspects of the detector design (sensors, readout ASICS and supplementary infrastructure) and the results of the latest thinned sensor prototypes (50 μm) are described.
|