Hernandez-Pinto, R. J., Sborlini, G. F. R., & Rodrigo, G. (2016). Towards gauge theories in four dimensions. J. High Energy Phys., 02(2), 044–14pp.
Abstract: The abundance of infrared singularities in gauge theories due to unresolved emission of massless particles (soft and collinear) represents the main difficulty in perturbative calculations. They are typically regularized in dimensional regularization, and their subtraction is usually achieved independently for virtual and real corrections. In this paper, we introduce a new method based on the loop-tree duality (LTD) theorem to accomplish the summation over degenerate infrared states directly at the integrand level such that the cancellation of the infrared divergences is achieved simultaneously, and apply it to reference examples as a proof of concept. Ultraviolet divergences, which are the consequence of the point-like nature of the theory, are also reinterpreted physically in this framework. The proposed method opens the intriguing possibility of carrying out purely four-dimensional implementations of higher-order perturbative calculations at next-to-leading order (NLO) and beyond free of soft and final-state collinear subtractions.
|
Kleiss, R. H. P., Malamos, I., Papadopoulos, C. G., & Verheyen, R. (2012). Counting to one: reducibility of one- and two-loop amplitudes at the integrand level. J. High Energy Phys., 12(12), 038–24pp.
Abstract: Calculation of amplitudes in perturbative quantum field theory involve large loop integrals. The complexity of those integrals, in combination with the large number of Feynman diagrams, make the calculations very difficult. Reduction methods proved to be very helpful, lowering the number of integrals that need to be actually calculated. Especially reduction at the integrand level improves the speed and set-up of these calculations. In this article we demonstrate, by counting the numbers of tensor structures and independent coefficients, how to write such relations at the integrand level for one-and two-loop amplitudes. We clarify their connection to the so-called spurious terms at one loop and discuss their structure in the two-loop case. This method is also applicable to higher loops, and the results obtained apply to both planar and non-planar diagrams.
|
Llanes Jurado, J., Rodrigo, G., & Torres Bobadilla, W. J. (2017). From Jacobi off-shell currents to integral relations. J. High Energy Phys., 12(12), 122–22pp.
Abstract: In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.
|
Mateu, V., & Rodrigo, G. (2013). Oriented event shapes at (NLL)-L-3 + O(alpha(2)(S)). J. High Energy Phys., 11(11), 030–29pp.
Abstract: We analyze oriented event-shapes in the context of Soft-Collinear Effective Theory (SCET) and in fixed-order perturbation theory. Oriented event-shapes are distributions of event-shape variables which are differential on the angle theta(T) that the thrust axis forms with the electron-positron beam. We show that at any order in perturbation theory and for any event shape, only two angular structures can appear: F-0 = 3/8 (1+cos(2) theta(T)) and F-1 = (1 – 3 cos(2) theta(T)). When integrating over theta(T) to recover the more familiar event-shape distributions, only F-0 survives. The validity of our proof goes beyond perturbation theory, and hence only these two structures are present at the hadron level. The proof also carries over massive particles. Using SCET techniques we show that singular terms can only arise in the F-0 term. Since only the hard function is sensitive to the orientation of the thrust axis, this statement applies also for recoil-sensitive variables such as Jet Broadening. We show how to carry out resummation of the singular terms at (NLL)-L-3 for Thrust, Heavy-Jet Mass, the sum of the Hemisphere Masses and C-parameter by using existing computations in SCET. We also compute the fixed-order distributions for these event-shapes at O(alpha(S)) analytically and at O(alpha(2)(S)) with the program Event2.
|
Sborlini, G. F. R., de Florian, D., & Rodrigo, G. (2014). Double collinear splitting amplitudes at next-to-leading order. J. High Energy Phys., 01(1), 018–55pp.
Abstract: We compute the next-to-leading order (NLO) QCD corrections to the 1 -> 2 splitting amplitudes in different dimensional regularization (DREG) schemes. Besides recovering previously known results, we explore new DREG schemes and analyze their consistency by comparing the divergent structure with the expected behavior predicted by Catani's formula. Through the introduction of scalar-gluons, we show the relation among splittings matrices computed using different schemes. Also, we extended this analysis to cover the double collinear limit of scattering amplitudes in the context of QCD+QED.
|
Sborlini, G. F. R., de Florian, D., & Rodrigo, G. (2014). Triple collinear splitting functions at NLO for scattering processes with photons. J. High Energy Phys., 10(10), 161–29pp.
Abstract: We present splitting functions in the triple collinear limit at next-to-leading order. The computation was performed in the context of massless QCD+QED, considering only processes which include at least one photon. Through the comparison of the IR divergent structure of splitting amplitudes with the expected known behavior, we were able to check our results. Besides that we implemented some consistency checks based on symmetry arguments and cross-checked the results among them. Studying photon-started processes, we obtained very compact results.
|
Sborlini, G. F. R., de Florian, D., & Rodrigo, G. (2015). Polarized triple-collinear splitting functions at NLO for processes with photons. J. High Energy Phys., 03(3), 021–30pp.
Abstract: We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling alpha(S), for the splitting processes gamma -> qq gamma, gamma -> qqg and g -> qq gamma. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).
|
Sborlini, G. F. R., Driencourt-Mangin, F., Hernandez-Pinto, R. J., & Rodrigo, G. (2016). Four-dimensional unsubtraction from the loop-tree duality. J. High Energy Phys., 08(8), 160–42pp.
Abstract: We present a new algorithm to construct a purely four dimensional representation of higher-order perturbative corrections to physical cross-sections at next-to-leading order (NLO). The algorithm is based on the loop-tree duality (LTD), and it is implemented by introducing a suitable mapping between the external and loop momenta of the virtual scattering amplitudes, and the external momenta of the real emission corrections. In this way, the sum over degenerate infrared states is performed at integrand level and the cancellation of infrared divergences occurs locally without introducing subtraction counter-terms to deal with soft and final-state collinear singularities. The dual representation of ultraviolet counter-terms is also discussed in detail, in particular for self-energy contributions. The method is first illustrated with the scalar three-point function, before proceeding with the calculation of the physical cross-section for gamma* -> q (q) over bar (g), and its generalisation to multi-leg processes. The extension to next-to-next-to-leading order (NNLO) is briefly commented.
|
Sborlini, G. F. R., Driencourt-Mangin, F., & Rodrigo, G. (2016). Four-dimensional unsubtraction with massive particles. J. High Energy Phys., 10(10), 162–34pp.
Abstract: We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with a scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
|