|
Chu, X. Y., Garani, R., Garcia-Cely, C., & Hambye, T. (2024). Dark matter bound-state formation in the Sun. J. High Energy Phys., 05(5), 045–32pp.
Abstract: The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
|
|
|
Di Bari, P., King, S. F., & Hossain Rahat, M. (2024). Gravitational waves from phase transitions and cosmic strings in neutrino mass models with multiple majorons. J. High Energy Phys., 05(5), 068–31pp.
Abstract: We explore the origin of Majorana masses within the majoron model and how this can lead to the generation of a distinguishable primordial stochastic background of gravitational waves. We first show how in the simplest majoron model only a contribution from cosmic string can be within the reach of planned experiments. We then consider extensions containing multiple complex scalars, demonstrating how in this case a spectrum comprising contributions from both a strong first order phase transition and cosmic strings can naturally emerge. We show that the interplay between multiple scalar fields can amplify the phase transition signal, potentially leading to double peaks over the wideband sloped spectrum from cosmic strings. We also underscore the possibility of observing such a gravitational wave background to provide insights into the reheating temperature of the universe. We conclude highlighting how the model can be naturally combined with scenarios addressing the origin of matter of the universe, where baryogenesis occurs via leptogenesis and a right-handed neutrino plays the role of dark matter.
|
|
|
Domcke, V., Garcia-Cely, C., Lee, S. M., & Rodd, N. L. (2024). Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches. J. High Energy Phys., 03(3), 128–51pp.
Abstract: In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.
|
|
|
Fu, B. W., Ghoshal, A., King, S. F., & Hossain Rahat, M. (2024). Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded by strings. J. High Energy Phys., 08(8), 237–25pp.
Abstract: The spontaneous breaking of a U(1) symmetry via an intermediate discrete symmetry may yield a hybrid topological defect of domain walls bounded by cosmic strings. The decay of this defect network leads to a unique gravitational wave signal spanning many orders in observable frequencies, that can be distinguished from signals generated by other sources. We investigate the production of gravitational waves from this mechanism in the context of the type-I two-Higgs-doublet model extended by a U(1)R symmetry, that simultaneously accommodates the seesaw mechanism, anomaly cancellation, and eliminates flavour-changing neutral currents. The gravitational wave spectrum produced by the string-bounded-wall network can be detected for U(1)R breaking scale from 1012 to 1015 GeV in forthcoming interferometers including LISA and Einstein Telescope, with a distinctive f3 slope and inflexion in the frequency range between microhertz and hertz.
|
|
|
Ghoshal, A., Gouttenoire, Y., Heurtier, L., & Simakachorn, P. (2023). Primordial black hole archaeology with gravitational waves from cosmic strings. J. High Energy Phys., 08(8), 196–43pp.
Abstract: Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.
|
|
|
Hernandez, P., Lopez-Pavon, J., Rius, N., & Sandner, S. (2022). Bounds on right-handed neutrino parameters from observable leptogenesis. J. High Energy Phys., 12(12), 012–58pp.
Abstract: We revisit the generation of a matter-antimatter asymmetry in the minimal extension of the Standard Model with two singlet heavy neutral leptons (HNL) that can explain neutrino masses. We derive an accurate analytical approximation to the solution of the complete linearized set of kinetic equations, which exposes the non-trivial parameter dependencies in the form of parameterization-independent CP invariants. The identification of various washout regimes relevant in different regions of parameter space sheds light on the relevance of the mass corrections in the interaction rates and clarifies the correlations of baryogenesis with other observables. In particular, by requiring that the measured baryon asymmetry is reproduced, we derive robust upper or lower bounds on the HNL mixings depending on their masses, and constraints on their flavour structure, as well as on the CP-violating phases of the PMNS mixing matrix, and the amplitude of neutrinoless double-beta decay. We also find certain correlations between low and high scale CP phases. Especially emphasizing the testable part of the parameter space we demonstrate that our findings are in very good agreement with numerical results. The methods developed in this work can help in exploring more complex scenarios.
|
|
|
Sandner, S., Hernandez, P., Lopez-Pavon, J., & Rius, N. (2023). Predicting the baryon asymmetry with degenerate right-handed neutrinos. J. High Energy Phys., 11(11), 153–37pp.
Abstract: We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.
|
|