Aguilera-Verdugo, J. J., Driencourt-Mangin, F., Plenter, J., Ramirez-Uribe, S., Rodrigo, G., Sborlini, G. F. R., et al. (2019). Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders. J. High Energy Phys., 12(12), 163–12pp.
Abstract: We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
|
Aguilera-Verdugo, J. J., Hernandez-Pinto, R. J., Rodrigo, G., Sborlini, G. F. R., & Torres Bobadilla, W. J. (2021). Causal representation of multi-loop Feynman integrands within the loop-tree duality. J. High Energy Phys., 01(1), 69–26pp.
Abstract: The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops and internal configurations, in terms of causal propagators only. Thus, providing very compact and causal integrand representations to all orders. In order to do so, we reconstruct their analytic expressions from numerical evaluation over finite fields. This procedure implicitly cancels out all unphysical singularities. We also interpret the result in terms of entangled causal thresholds. In view of the simple structure of the dual expressions, we integrate them numerically up to four loops in integer space-time dimensions, taking advantage of their smooth behaviour at integrand level.
|
Agullo, I., del Rio, A., & Navarro-Salas, J. (2018). On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation. Symmetry-Basel, 10(12), 763–14pp.
Abstract: It is well known that not every symmetry of a classical field theory is also a symmetry of its quantum version. When this occurs, we speak of quantum anomalies. The existence of anomalies imply that some classical Noether charges are no longer conserved in the quantum theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge associated with these transformations accounts for the net circular polarization or the optical helicity of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes the helicity of photons and opens the possibility of extracting information from strong gravitational fields through the observation of the polarization of photons. We also argue that the physical consequences of this anomaly can be understood in terms of the asymmetric quantum creation of photons by the gravitational field.
|
Belchior, F. M., & Maluf, R. (2024). Duality between the Maxwell-Chern-Simons and self-dual models in very special relativity. Phys. Lett. B, 855, 138794–7pp.
Abstract: This work investigates the classical and quantum duality between the SIM (1)-Maxwell-Chern-Simons (MCS) model and its self -dual counterpart. Initially, we focus on free -field cases to establish equivalence through two distinct approaches: comparing the equations of motion and utilizing the master Lagrangian method. In both instances, the classical correspondence between the self -dual and MCS dual fields undergoes modifications due to very special relativity (VSR). Specifically, the duality is established when the associated VSR-mass parameters are identical, and the dual field is introduced through a non -local VSR correction. Furthermore, we analyze the duality when the self -dual model is minimally coupled to fermions. As a result, we demonstrate that Thirring-like interactions, corrected for non -local VSR contributions, are included in the MCS model. Additionally, we establish the quantum equivalence of the models by performing a functional integration of the fields and comparing the resulting effective Lagrangians.
|
Bernabeu, J., & Navarro-Salas, J. (2019). A Non-Local Action for Electrodynamics: Duality Symmetry and the Aharonov-Bohm Effect, Revisited. Symmetry-Basel, 11(10), 1191–13pp.
Abstract: A non-local action functional for electrodynamics depending on the electric and magnetic fields, instead of potentials, has been proposed in the literature. In this work we elaborate and improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry of the electromagnetic field and the Aharonov-Bohm effect, two subtle aspects of electrodynamics that we examine in a novel way. We show how the former can be derived from the simple harmonic oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version of the latter naturally arises in an explicitly non-local manner.
|
Galli, P., Meessen, P., & Ortin, T. (2013). The Freudenthal gauge symmetry of the black holes of N=2, d=4 supergravity. J. High Energy Phys., 05(5), 011–15pp.
Abstract: We show that the representation of black-hole solutions in terms of the variables H-M which are harmonic functions in the supersymmetric case is non-unique due to the existence of a local symmetry in the effective action. This symmetry is a continuous (and local) generalization of the discrete Freudenthal transformations initially introduced for the black-hole charges and can be used to rewrite the physical fields of a solution in terms of entirely different-looking functions.
|
Galli, P., Ortin, T., Perz, J., & Shahbazi, C. S. (2013). Black-hole solutions of N=2, d=4 supergravity with a quantum correction, in the H-FGK formalism. J. High Energy Phys., 04(4), 157–37pp.
Abstract: We apply the H-FGK formalism to the study of some properties of a general class of black holes in N = 2 supergravity in four dimensions that correspond to the harmonic and hyperbolic ansatze and we obtain explicit extremal and non-extremal solutions for the t(3) model with and without a quantum correction. Not all solutions of the corrected model (quantum black holes), including in particular a solution with a single q(1) charge, have a regular classical limit.
|
Ramirez-Uribe, S., Hernandez-Pinto, R. J., Rodrigo, G., Sborlini, G. F. R., & Torres Bobadilla, W. J. (2021). Universal opening of four-loop scattering amplitudes to trees. J. High Energy Phys., 04(4), 129–22pp.
Abstract: The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the (NMLT)-M-4 universal topology. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the (NMLT)-M-4 universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.
|
Ramirez-Uribe, S., Renteria-Olivo, A. E., Renteria-Estrada, D. F., Martinez de Lejarza, J. J., Dhani, P. K., Cieri, L., et al. (2025). Vacuum amplitudes and time-like causal unitary in the loop-tree duality. J. High Energy Phys., 01(1), 103–24pp.
Abstract: We present the first proof-of-concept application to decay processes at higher perturbative orders of loop-tree duality (LTD) causal unitary, a novel methodology that exploits the causal properties of vacuum amplitudes in the LTD and is directly well-defined in the four physical dimensions of the space-time. The generation of loop- and tree-level contributions to the differential decay rates from a kernel multiloop vacuum amplitude is shown in detail, and explicit expressions are presented for selected processes that are suitable for a lightweight understanding of the method. Specifically, we provide a clear physical interpretation of the local cancellation of soft, collinear and threshold singularities, and of the local renormalisation of ultraviolet singularities. The presentation is illustrated with numerical results that showcase the advantages of the method.
|
Ramirez-Uribe, S., Renteria-Olivo, A. E., Rodrigo, G., Sborlini, G. F. R., & Vale Silva, L. (2022). Quantum algorithm for Feynman loop integrals. J. High Energy Phys., 05(5), 100–32pp.
Abstract: We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical algorithms when the number of solutions is much smaller than the number of possible configurations. A suitable modification is introduced to deal with topologies in which the number of causal states to be identified is nearly half of the total number of states. The output of the quantum algorithm in IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the loop-tree duality of representative multiloop topologies. The algorithm may also find application and interest in graph theory to solve problems involving directed acyclic graphs.
|