LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). Amplitude analysis and branching fraction measurement of B+ → D*-Ds+π+ decays. J. High Energy Phys., 08(8), 165–40pp.
Abstract: The decays of the B+ meson to the final state D*D--(s)+pi(+) are studied in proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb(-1). The ratio of branching fractions of the B+ -> D-Ds+pi(+) and B-0 -> D*D--(s)+ decays is measured to be 0.173 +/- 0.006 +/- 0.010, where the first uncertainty is statistical and the second is systematic. Using partially reconstructed D-s*(+) -> D-s*(+)gamma and D-s(+)pi(0) decays, the ratio of branching fractions between the B+ -> D*D--(s)*(+)pi(+) and B+ -> D*D--(s)+pi(+) decays is determined as 1.31 +/- 0.07 +/- 0.14. An amplitude analysis of the B+ -> D*D--(s)+pi(+) decay is performed for the first time, revealing dominant contributions from known excited charm resonances decaying to the D*(-)pi(+) final state. No significant evidence of exotic contributions in the D-s(+)pi(+) or D*D--(s)+ channels is found. The fit fraction of the scalar state T*(c (s) over bar0) (2900)(++) observed in the B+ -> D-Ds+pi(+) decay is determined to be less than 2.3% at a 90% confidence level.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of the D+-> pi(-)pi(+)pi(+) decay and measurement of the pi(-)pi(+) S-wave amplitude. J. High Energy Phys., 06(6), 044–28pp.
Abstract: An amplitude analysis of the D+-> (-)pi(+)pi(+) decay is performed with a sample corresponding to 1.5 fb(-1) of integrated luminosity of pp collisions at a centre-of-mass energy root s = 8 TeV collected by the LHCb detector in 2012. The sample contains approximately six hundred thousand candidates with a signal purity of 95%. The resonant structure is studied through a fit to the Dalitz plot where the pi(-)pi(+) S-wave amplitude is extracted as a function of pi(-)pi(+) mass, and spin-1 and spin-2 resonances are included coherently through an isobar model. The S-wave component is found to be dominant, followed by the rho(770)(0)pi(+) and f(2)(1270)pi(+) components. A small contribution from the omega(782) -> pi(-)pi(+) decay is seen for the first time in the D+-> pi(-)pi(+)pi(+) decay.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of the D+s → π-π+π+ decay. J. High Energy Phys., 07(7), 204–35pp.
Abstract: A Dalitz plot analysis of the D-s(+) -> pi(-)pi(+)pi(+) decay is presented. The analysis is based on proton-proton collision data recorded by the LHCb experiment at a centre-of-mass energy of 8TeV and corresponding to an integrated luminosity of 1.5 fb(-1). The resonant structure of the decay is obtained using a quasi-model-independent partial-wave analysis, in which the pi(+)pi(-) S-wave amplitude is parameterised as a generic complex function determined by a fit to the data. The S-wave component is found to be dominant, followed by the contribution from spin-2 resonances and a small contribution from spin-1 resonances. The latter includes the first observation of the D-s(+) -> omega(782)pi(+) channel in the D-s(+) -> pi(-)pi(+)pi(+) decay. The resonant structures of the D-s(+) -> pi(-)pi(+)pi(+) and D+ -> pi(-)pi(+)pi(+) decays are compared, providing information about the mechanisms for the hadron formation in these decays.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for CP violation in D(s)+ → K- K+ K+ decays. J. High Energy Phys., 07(7), 067–25pp.
Abstract: A search for direct CP violation in the Cabibbo-suppressed decay D-s(+) -> K-K+ K+ and in the doubly Cabibbo-suppressed decay D+ -> K- K+ K+ is reported. The analysis is performed with data collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of 13TeV corresponding to an integrated luminosity of 5.6 fb(-1). The search is conducted by comparing the D-(s)(+) and D-(s)(-) Dalitz-plot distributions through a model-independent binned technique, based on fits to the K-K+K+ invariantmass distributions, with a total of 0.97 (1.27) million D-s(+) (D+) signal candidates. The results are given as p-values for the hypothesis of CP conservation and are found to be 13.3% for the D+ -> K-K+ K+ decay and 31.6% for the D+ -> K-K+ K+ decay. No evidence for CP violation is observed in these decays.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for the doubly heavy baryon Ξbc+ decaying to J/ψΞc+. Chin. Phys. C, 47(9), 093001–13pp.
Abstract: A first search for the Xi(+)(bc) -> J/psi Xi c+ decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb(-1) recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of and standard deviations at masses of 6571 and 6694 MeV/c(2), respectively. Upper limits are set on the Xi(+)(bc) baryon production cross-section times the branching fraction relative to that of the B-c(+) -> J/psi Xi(+)(c) decay at centre-of-mass energies of 8 and 13 TeV, in the Xi(+)(bc) and in the rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to, respectively. Upper limits are presented as a function of the Xi(+)(bc) mass and lifetime.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Λc+ polarimetry using the dominant hadronic mode. J. High Energy Phys., 07(7), 228–26pp.
Abstract: The polarimeter vector field for multibody decays of a spin-half baryon is introduced as a generalisation of the baryon asymmetry parameters. Using a recent amplitude analysis of the Lambda(+)(c) -> pK(-)pi(+) decay performed at the LHCb experiment, we compute the distribution of the kinematic-dependent polarimeter vector for this process in the space of Mandelstam variables to express the polarised decay rate in a model-agnostic form. The obtained representation can facilitate polarisation measurements of the Lambda(+)(c) baryon and eases inclusion of the Lambda(+)(c)-> pK(-)pi(+) decay mode in hadronic amplitude analyses.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Observation of the B+ → Jψη'K+ decay. J. High Energy Phys., 08(8), 174–27pp.
Abstract: The B+ -> J psi eta'K+ decay is observed for the first time using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8, and 13TeV, corresponding to a total integrated luminosity of 9 fb(-1). The branching fraction of this decay is measured relative to the known branching fraction of the B+ -> psi(2S)K+ decay and found to be B(B+ -> J psi eta'K+)/B(B+ -> psi(2S)K+) = (4.91 +/- 0.47 +/- 0.29 +/- 0.07) x 10(-2), where the first uncertainty is statistical, the second is systematic and the third is related to external branching fractions. A first look at the J/psi eta' mass distribution is performed and no signal of intermediate resonances is observed.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for CP violation in the phase space of D0 → π-π+π0 decays with the energy test. J. High Energy Phys., 09(9), 129–24pp.
Abstract: A search for CP violation in D-0 -> pi(-)pi(+)pi(0) decays is reported, using pp collision data collected by the LHCb experiment from 2015 to 2018 corresponding to an integrated luminosity of 6 fb(-1). An unbinned model-independent approach provides sensitivity to local CP violation within the two-dimensional phase space of the decay. The method is validated using the Cabibbo-favoured channel D-0 -> K-pi(+)pi(0) and background regions of the signal mode. The results are consistent with CP symmetry in this decay.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Measurements of the branching fraction ratio B(φ → μ+μ-)/B(φ → e+e-) with charm meson decays. J. High Energy Phys., 05(5), 293–24pp.
Abstract: Measurements of the branching fraction ratio B(phi -> mu(+)mu(-))/B(phi -> e(+)e(-)) with D-s(+) -> pi(+)phi and D+ -> pi(+)phi decays, denoted R-phi pi(s) and R-phi pi(d), are presented. The analysis is performed using a dataset corresponding to an integrated luminosity of 5.4 fb(-1) of pp collision data collected with the LHCb experiment. The branching fractions are normalised with respect to the B+ -> K+ J/psi(-> e(+) e(-)) and B+ -> K+ J/psi(-> mu(+)mu(-)) decay modes. The combination of the results yields R-phi pi = 1.022 +/- 0.012 (stat) +/- 0.048 (syst). The result is compatible with previous measurements of the phi -> l(+) l(-) branching fractions and predictions based on the Standard Model.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Search for CP violation in the phase space of D0 → KS0 K± π∓ decays with the energy test. J. High Energy Phys., 03(3), 107–20pp.
Abstract: A search for CP violation in D-0 -> (KSK+)-K-0 pi(-) and D-0 -> (KSK-)-K-0 pi(+) decays is reported. The search is performed using an unbinned model-independent method known as the energy test that probes local CP violation in the phase space of the decays. The data analysed correspond to an integrated luminosity of 5.4 fb(-1) collected in proton-proton collisions by the LHCb experiment at a centre-of-mass energy of root s = 13TeV, amounting to approximately 950 thousand and 620 thousand signal candidates for the D-0 -> (KSK-)-K-0 pi(+) and D-0 -> (KSK+)-K-0 pi(-) modes, respectively. The method is validated using D-0 -> K-pi(+)pi(-)pi(+) and D-0 -> K-S(0)pi(+)pi(-) decays, where CP-violating effects are expected to be negligible, and using background-enhanced regions of the signal decays. The results are consistent with CP symmetry in both the D-0 -> (KSK-)-K-0 pi(+) and the D-0 -> (KSK+)-K-0 pi(-) decays, with p-values for the hypothesis of no CP violation of 70% and 66%, respectively.
|