LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). Search for CP violation in D-(s)(+) -> h(+) pi(0) and decays D-(s)(+) -> h(+) eta decays. J. High Energy Phys., 06(6), 019–25pp.
Abstract: Searches for CP violation in the two-body decays D-(s)(+) -> h(+)pi(0) and D-(s)(+) -> h(+)eta (where h(+) denotes a pi(+) or K+ meson) are performed using pp collision data collected by the LHCb experiment corresponding to either 9 fb(-1) or 6 fb(-1) of integrated luminosity. The pi(0) and eta mesons are reconstructed using the e(+) e(-)gamma final state, which can proceed as three-body decays pi(0) -> e(+) e(-) gamma and eta -> e(+) e(-)gamma, or via the two-body decays pi(0) -> gamma gamma and eta -> gamma gamma followed by a photon conversion. The measurements are made relative to the control modes D-(s)(+) K(S)(0)h(+) to cancel the production and detection asymmetries. The CP asymmetries are measured to be A(CP)(D+ -> pi(+)pi(0)) = (-1.3 +/- 0.9 +/- 0.6)%, A(CP)(D+ -> K+pi(0)) = (- 3.2 +/- 4.7 +/- 2.1)%, A(CP)(D+ -> pi(+)eta) = (-0.2 +/- 0.8 +/- 0.4)%, A(CP)(D+ -> K+eta) = (-6 +/- 10 +/- 4 )%, A(CP)(D-s(+) -> K+pi(0)) = (-0.8 +/- 3.9 +/- 1.2)%, A(CP)(D-s(+) -> pi(+)eta) = ( 0.8 +/- 0.7 +/- 0.5)%, A(CP)(D-s(+) -> K+eta) = ( 0.9 +/- 3.7 +/- 1.1)%, where the first uncertainties are statistical and the second systematic. These results are consistent with no CP violation and mostly constitute the most precise measurements of A(CP) in these decay modes to date.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). Amplitude analysis and branching fraction measurement of B+ → D*-Ds+π+ decays. J. High Energy Phys., 08(8), 165–40pp.
Abstract: The decays of the B+ meson to the final state D*D--(s)+pi(+) are studied in proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb(-1). The ratio of branching fractions of the B+ -> D-Ds+pi(+) and B-0 -> D*D--(s)+ decays is measured to be 0.173 +/- 0.006 +/- 0.010, where the first uncertainty is statistical and the second is systematic. Using partially reconstructed D-s*(+) -> D-s*(+)gamma and D-s(+)pi(0) decays, the ratio of branching fractions between the B+ -> D*D--(s)*(+)pi(+) and B+ -> D*D--(s)+pi(+) decays is determined as 1.31 +/- 0.07 +/- 0.14. An amplitude analysis of the B+ -> D*D--(s)+pi(+) decay is performed for the first time, revealing dominant contributions from known excited charm resonances decaying to the D*(-)pi(+) final state. No significant evidence of exotic contributions in the D-s(+)pi(+) or D*D--(s)+ channels is found. The fit fraction of the scalar state T*(c (s) over bar0) (2900)(++) observed in the B+ -> D-Ds+pi(+) decay is determined to be less than 2.3% at a 90% confidence level.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of the D+-> pi(-)pi(+)pi(+) decay and measurement of the pi(-)pi(+) S-wave amplitude. J. High Energy Phys., 06(6), 044–28pp.
Abstract: An amplitude analysis of the D+-> (-)pi(+)pi(+) decay is performed with a sample corresponding to 1.5 fb(-1) of integrated luminosity of pp collisions at a centre-of-mass energy root s = 8 TeV collected by the LHCb detector in 2012. The sample contains approximately six hundred thousand candidates with a signal purity of 95%. The resonant structure is studied through a fit to the Dalitz plot where the pi(-)pi(+) S-wave amplitude is extracted as a function of pi(-)pi(+) mass, and spin-1 and spin-2 resonances are included coherently through an isobar model. The S-wave component is found to be dominant, followed by the rho(770)(0)pi(+) and f(2)(1270)pi(+) components. A small contribution from the omega(782) -> pi(-)pi(+) decay is seen for the first time in the D+-> pi(-)pi(+)pi(+) decay.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Amplitude analysis of the D+s → π-π+π+ decay. J. High Energy Phys., 07(7), 204–35pp.
Abstract: A Dalitz plot analysis of the D-s(+) -> pi(-)pi(+)pi(+) decay is presented. The analysis is based on proton-proton collision data recorded by the LHCb experiment at a centre-of-mass energy of 8TeV and corresponding to an integrated luminosity of 1.5 fb(-1). The resonant structure of the decay is obtained using a quasi-model-independent partial-wave analysis, in which the pi(+)pi(-) S-wave amplitude is parameterised as a generic complex function determined by a fit to the data. The S-wave component is found to be dominant, followed by the contribution from spin-2 resonances and a small contribution from spin-1 resonances. The latter includes the first observation of the D-s(+) -> omega(782)pi(+) channel in the D-s(+) -> pi(-)pi(+)pi(+) decay. The resonant structures of the D-s(+) -> pi(-)pi(+)pi(+) and D+ -> pi(-)pi(+)pi(+) decays are compared, providing information about the mechanisms for the hadron formation in these decays.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for CP violation in D(s)+ → K- K+ K+ decays. J. High Energy Phys., 07(7), 067–25pp.
Abstract: A search for direct CP violation in the Cabibbo-suppressed decay D-s(+) -> K-K+ K+ and in the doubly Cabibbo-suppressed decay D+ -> K- K+ K+ is reported. The analysis is performed with data collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of 13TeV corresponding to an integrated luminosity of 5.6 fb(-1). The search is conducted by comparing the D-(s)(+) and D-(s)(-) Dalitz-plot distributions through a model-independent binned technique, based on fits to the K-K+K+ invariantmass distributions, with a total of 0.97 (1.27) million D-s(+) (D+) signal candidates. The results are given as p-values for the hypothesis of CP conservation and are found to be 13.3% for the D+ -> K-K+ K+ decay and 31.6% for the D+ -> K-K+ K+ decay. No evidence for CP violation is observed in these decays.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for the doubly heavy baryon Ξbc+ decaying to J/ψΞc+. Chin. Phys. C, 47(9), 093001–13pp.
Abstract: A first search for the Xi(+)(bc) -> J/psi Xi c+ decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb(-1) recorded at centre-of-mass energies of 7, 8, and 13 TeV. Two peaking structures are seen with a local (global) significance of and standard deviations at masses of 6571 and 6694 MeV/c(2), respectively. Upper limits are set on the Xi(+)(bc) baryon production cross-section times the branching fraction relative to that of the B-c(+) -> J/psi Xi(+)(c) decay at centre-of-mass energies of 8 and 13 TeV, in the Xi(+)(bc) and in the rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to, respectively. Upper limits are presented as a function of the Xi(+)(bc) mass and lifetime.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Λc+ polarimetry using the dominant hadronic mode. J. High Energy Phys., 07(7), 228–26pp.
Abstract: The polarimeter vector field for multibody decays of a spin-half baryon is introduced as a generalisation of the baryon asymmetry parameters. Using a recent amplitude analysis of the Lambda(+)(c) -> pK(-)pi(+) decay performed at the LHCb experiment, we compute the distribution of the kinematic-dependent polarimeter vector for this process in the space of Mandelstam variables to express the polarised decay rate in a model-agnostic form. The obtained representation can facilitate polarisation measurements of the Lambda(+)(c) baryon and eases inclusion of the Lambda(+)(c)-> pK(-)pi(+) decay mode in hadronic amplitude analyses.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Observation of the B+ → Jψη'K+ decay. J. High Energy Phys., 08(8), 174–27pp.
Abstract: The B+ -> J psi eta'K+ decay is observed for the first time using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8, and 13TeV, corresponding to a total integrated luminosity of 9 fb(-1). The branching fraction of this decay is measured relative to the known branching fraction of the B+ -> psi(2S)K+ decay and found to be B(B+ -> J psi eta'K+)/B(B+ -> psi(2S)K+) = (4.91 +/- 0.47 +/- 0.29 +/- 0.07) x 10(-2), where the first uncertainty is statistical, the second is systematic and the third is related to external branching fractions. A first look at the J/psi eta' mass distribution is performed and no signal of intermediate resonances is observed.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2023). Search for CP violation in the phase space of D0 → π-π+π0 decays with the energy test. J. High Energy Phys., 09(9), 129–24pp.
Abstract: A search for CP violation in D-0 -> pi(-)pi(+)pi(0) decays is reported, using pp collision data collected by the LHCb experiment from 2015 to 2018 corresponding to an integrated luminosity of 6 fb(-1). An unbinned model-independent approach provides sensitivity to local CP violation within the two-dimensional phase space of the decay. The method is validated using the Cabibbo-favoured channel D-0 -> K-pi(+)pi(0) and background regions of the signal mode. The results are consistent with CP symmetry in this decay.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Measurements of the branching fraction ratio B(φ → μ+μ-)/B(φ → e+e-) with charm meson decays. J. High Energy Phys., 05(5), 293–24pp.
Abstract: Measurements of the branching fraction ratio B(phi -> mu(+)mu(-))/B(phi -> e(+)e(-)) with D-s(+) -> pi(+)phi and D+ -> pi(+)phi decays, denoted R-phi pi(s) and R-phi pi(d), are presented. The analysis is performed using a dataset corresponding to an integrated luminosity of 5.4 fb(-1) of pp collision data collected with the LHCb experiment. The branching fractions are normalised with respect to the B+ -> K+ J/psi(-> e(+) e(-)) and B+ -> K+ J/psi(-> mu(+)mu(-)) decay modes. The combination of the results yields R-phi pi = 1.022 +/- 0.012 (stat) +/- 0.048 (syst). The result is compatible with previous measurements of the phi -> l(+) l(-) branching fractions and predictions based on the Standard Model.
|