Balbinot, R., & Fabbri, A. (2023). The Hawking Effect in the Particles-Partners Correlations. Physics, 5(4), 968–982.
Abstract: We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.
|
Balbinot, R., & Fabbri, A. (2024). The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime. Universe, 10(1), 18–14pp.
Abstract: The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2018). Born-Infeld inspired modifications of gravity. Phys. Rep., 727, 1–129.
Abstract: General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
|
Bernal, N., Munoz-Albornoz, V., Palomares-Ruiz, S., & Villanueva-Domingo, P. (2022). Current and future neutrino limits on the abundance of primordial black holes. J. Cosmol. Astropart. Phys., 10(10), 068–38pp.
Abstract: Primordial black holes (PBHs) formed in the early Universe are sources of neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be detected at Earth and constraints on the abundance of comet-mass PBHs could be derived from the null observation of this neutrino flux. Here, we consider non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data, as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande, JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For PBHs less massive than " few x 1014 g, PBHs would have already evaporated by now, whereas more massive PBHs would still be present and would constitute a fraction of the dark matter of the Universe. We consider monochromatic and extended (log-normal) mass distributions, and a PBH mass range spanning from 1012 g to ti 1016 g. Finally, we also compare our results with previous ones in the literature.
|
Boudet, S., Bombacigno, F., Moretti, F., & Olmo, G. J. (2023). Torsional birefringence in metric-affine Chern-Simons gravity: gravitational waves in late-time cosmology. J. Cosmol. Astropart. Phys., 01(1), 026–28pp.
Abstract: In the context of the metric-affine Chern-Simons gravity endowed with projective invariance, we derive analytical solutions for torsion and nonmetricity in the homogeneous and isotropic cosmological case, described by a flat Friedmann-Robertson-Walker metric. We discuss in some details the general properties of the cosmological solutions in the presence of a perfect fluid, such as the dynamical stability and the emergence of big bounce points, and we examine the structure of some specific solutions reproducing de Sitter and power law behaviours for the scale factor. Then, we focus on first-order perturbations in the de Sitter scenario, and we study the propagation of gravitational waves in the adiabatic limit, looking at tensor and scalar polarizations. In particular, we find that metric tensor modes couple to torsion tensor components, leading to the appearance, as in the metric version of Chern-Simons gravity, of birefringence, characterized by different dispersion relations for the left and right circularized polarization states. As a result, the purely tensor part of torsion propagates like a wave, while nonmetricity decouples and behaves like a harmonic oscillator. Finally, we discuss scalar modes, outlining as they decay exponentially in time and do not propagate.
|
Boudet, S., Bombacigno, F., Olmo, G. J., & Porfirio, P. (2022). Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity. J. Cosmol. Astropart. Phys., 05(5), 032–29pp.
Abstract: We generalize the Chern-Simons modified gravity to the metric-affine case and impose projective invariance by supplementing the Pontryagin density with homothetic curvature terms which do not spoil topologicity. The latter is then broken by promoting the coupling of the Chern-Simons term to a (pseudo)-scalar field. The solutions for torsion and nonmetricity are derived perturbatively, showing that they can be iteratively obtained from the background fields. This allows us to describe the dynamics for the metric and the scalar field perturbations in a self-consistent way, and we apply the formalism to the study of quasi normal modes in a Schwarzschild black hole background. Unlike in the metric formulation of this theory, we show that the scalar field is endowed with dynamics even in the absence of its kinetic term in the action. Finally, using numerical methods we compute the quasinormal frequencies and characterize the late-time power law tails for scalar and metric perturbations, comparing the results with the outcomes of the purely metric approach.
|
Casals, M., Fabbri, A., Martinez, C., & Zanelli, J. (2016). Quantum dress for a naked singularity. Phys. Lett. B, 760, 244–248.
Abstract: We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.
|
Creminelli, P., Loayza, N., Serra, F., Trincherini, E., & Trombetta, L. G. (2020). Hairy black-holes in shift-symmetric theories. J. High Energy Phys., 08(8), 045–24pp.
Abstract: Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current J(2) diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since J(2) is not a scalar quantity, since J(mu) is not a diffinvariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function G(5)similar to log X . In this case the shift-symmetry current is diff-invariant, but contains powers of X in the denominator, so that its divergence at the horizon is again immaterial. We confirm that other hairy solutions in the presence of non-analytic Horndeski functions are pathological, featuring divergences of physical quantities as soon as one departs from time-independence and spherical symmetry. We generalise the no-hair theorem to Beyond Horndeski and DHOST theories, showing that the coupling with Gauss-Bonnet is necessary to have hair.
|
De Romeri, V., Martinez-Mirave, P., & Tortola, M. (2021). Signatures of primordial black hole dark matter at DUNE and THEIA. J. Cosmol. Astropart. Phys., 10(10), 051–21pp.
Abstract: Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
|
Fernandez-Silvestre, D., Foo, J., & Good, M. R. R. (2022). On the duality of Schwarzschild-de Sitter spacetime and moving mirror. Class. Quantum Gravity, 39(5), 055006–18pp.
Abstract: The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.
|