|
Oset, E., Chen, H. X., Feijoo, A., Geng, L. S., Liang, W. H., Li, D. M., et al. (2016). Study of reactions disclosing hidden charm pentaquarks with or without strangeness. Nucl. Phys. A, 954, 371–392.
Abstract: We present results for five reactions, Lambda(b) -> J/psi K(-)p, Lambda(b) -> J/psi eta Lambda, Lambda(b) -> J/psi pi(-)p, Lambda(b) -> J/psi K-0 Lambda and Xi(-)(b) -> J/psi K-Lambda, where combining information from the meson baryon interaction, using the chiral unitary approach, and predictions made for molecular states of hidden charm, with or without strangeness, we can evaluate invariant mass distributions for the light meson baryon states, and for those of J/psi p or J/psi Lambda. We show that with the present available information, in all of these reactions one finds peaks where the pentaquark states show up. In the Lambda(b) -> J/psi K(-)p, and Lambda(b) -> J/psi pi(-)p reactions we show that the results obtained from our study are compatible with present experimental observations.
|
|
|
Molina, R., Xie, J. J., Liang, W. H., Geng, L. S., & Oset, E. (2020). Theoretical interpretation of the D-s(+) -> pi(+)pi(0)eta decay and the nature of a(0)(980). Phys. Lett. B, 803, 135279–4pp.
Abstract: In a recent paper [I], the BESIII Collaboration reported the so-called first observation of pure W-annihi- lation decays D-s(+) -> a(0)(+) (980)pi(0) and D-s(+) -> a(0)(0)(980)pi(+). The measured absolute branching fractions are, however, puzzlingly larger than those of other measured pure W-annihilation decays by at least one order of magnitude. In addition, the relative phase between the two decay modes is found to be about 0 degrees. In this letter, we show that all these can be easily understood if the a(0)(980) is a dynamically generated state from (K) over barK and pi eta interactions in coupled channels. In such a scenario, the D-s(+) decay proceeds via internal W emission instead of W-annihilation, which has a larger decay rate than W-annihilation. The proposed decay mechanism and the molecular nature of the a(0)(980) also provide a natural explanation to the measured negative interference between the two decay modes.
|
|
|
Xie, J. J., & Oset, E. (2019). Search for the Sigma* state in Lambda(+)(c) -> pi(+)pi(0)pi(-)Sigma(+) decay by triangle singularity. Phys. Lett. B, 792, 450–453.
Abstract: A Sigma* resonance with spin-parity J(P) = 1/2(-) and mass in the vicinity of the (K) over barN threshold has been predicted in the unitary chiral approach and inferred from the analysis of CLAS data on the gamma p -> K+pi(0)Sigma(0) reaction. In this work, based on the dominant Cabibbo favored weak decay mechanism, we perform a study of Lambda(+)(c) -> pi(+)pi(0)Sigma* with the possible Sigma* state decaying into pi(-)Sigma(+) through a triangle diagram. This process is initiated by Lambda(+)(c) -> pi(+)(K) over bar *N, then the (K) over bar* decays into (K) over bar pi and (K) over barN produce the Sigma* through a triangle loop containing (K) over bar *N (K) over bar which develops a triangle singularity. We show that the pi(-)Sigma(+) state is generated from final state interaction of (K) over barN in S-wave and isospin I = 1, and the Lambda(+)(c) -> pi(+)pi(0)pi(-)Sigma(+) decay can be used to study the possible Sigma* state around the (K) over barN threshold. The proposed decay mechanism can provide valuable information on the nature of the Sigma* resonance and can in principle be tested by facilities such as LHCb, BelleII and BESIII.
|
|
|
Xie, J. J., Liang, W. H., & Oset, E. (2018). Hidden charm pentaquark and Lambda(1405) in the Lambda(0)(b) -> eta K-c(-) p(pi Sigma) reaction. Phys. Lett. B, 777, 447–452.
Abstract: We have performed a study of the Lambda(0)(b) -> eta K-c(-) p and Lambda(0)(b) -> eta(c)pi Sigma reactions based on the dominant Cabibbo favored weak decay mechanism. We show that the K- p produced only couples to Lambda* states, not Sigma* and that the pi Sigma state is only generated from final state interaction of (K) over barN and eta Lambda channels which are produced in a primary stage. This guarantees that the pi Sigma state is generated in isospin I=0 and we see that the invariant mass produces a clean signal for the Lambda(1405) of higher mass at 1420 MeV. We also study the eta(c)p final state interaction, which is driven by the excitation of a hidden charm resonance predicted before. We relate the strength of the different invariant mass distributions and find similar strengths that should be clearly visible in an ongoing LHCb experiment. In particular we predict that a clean peak should be seen for a hidden charm resonance that couples to the eta(c)p channel in the invariant eta(c)p mass distribution.
|
|
|
Debastiani, V. R., Liang, W. H., Xie, J. J., & Oset, E. (2017). Predictions for eta(c) -> eta pi(+)pi(-) producing f(0)(500), f(0)(980) and a(0)(980). Phys. Lett. B, 766, 59–64.
Abstract: We perform calculations for the eta(c) -> eta pi(+)pi(-) decay using elements of SU(3) symmetry to see the weight of different trios of pseudoscalars produced in this decay, prior to the final state interaction of the mesons. After that, the interaction of pairs of mesons, leading finally to eta pi(+)pi(-), is done using the chiral unitary approach. We evaluate the pi(+)pi(-) and pi eta mass distributions and find large and clear signals for f(0)(500), f(0)(980) and a(0)(980) excitation. The reaction is similar to the chi(c1) -> eta pi(+)pi(-), which has been recently measured at BESIII and its implementation and comparison with these predictions will be very valuable to shed light on the nature of the low mass scalar mesons.
|
|
|
Wang, E., Xie, J. J., & Oset, E. (2016). chi(c0)(1P) decay into (Sigma)over-bar Sigma pi search of an I=1, 1/2(-) baryon state around (K)over-barN threshold. Phys. Lett. B, 753, 526–532.
Abstract: We present the theoretical study of the process chi(c0)(1P) -> (Sigma) over bar Sigma pi decay, by taking into account the pi Sigma and pi(Sigma) over bar final state interactions of the final meson-baryon pair based on the chiral unitary approach. We show that the process filters the isospin I = 1 in the pi Sigma channel and offers a reaction to test the existence of an I = 1 state with strangeness S = -1 and spin-parity J(p) = 1/2(-) around the (K) over barN threshold predicted by some theories and supported by some experiments.
|
|
|
Xie, J. J., & Oset, E. (2016). Role of the f(1)(1285) state in the J/ psi -> phi(K)over-barK* and J/psi -> phi f(1) (1285) decays. Phys. Lett. B, 753, 591–594.
Abstract: We study the role of the f(1)(1285) resonance in the decays of J/psi -> phi(K) over barK* and J/psi -> f(1) (1285). The theoretical approach is based on the results of chiral unitary theory where the f1(1285) resonance is dynamically generated from the K* (K) over bar -c.c. interaction. In order to further test the dynamical nature of the f(1)(1285) state, we investigate the J/psi -> phi(K) over barK* decay close to the (K) over barK* threshold and make predictions for the ratio of the invariant mass distributions of the J/psi -> phi(K) over barK* decay and the J/psi -> phi f(1)(1285) partial decay width with all the parameters of the mechanism fixed in previous studies. The results can be tested in future experiments and therefore offer new clues on the nature of the f(1) (1285) state.
|
|
|
Aceti, F., Xie, J. J., & Oset, E. (2015). The K(K)over-bar pi decay of the f(1) (1285) and its nature as a K*(K)over-bar – cc molecule. Phys. Lett. B, 750, 609–614.
Abstract: We investigate the decay of f(1) (1285) > pi K (K) over bar with the assumption that the f(1) (1285) is dynamically generated from the K*(K) over bar – cc interaction. In addition to the tree level diagrams that proceed via f(1)(1285) -> K*(K) over bar – cc -> pi K (K) over bar, we take into account also the final state interactions of K (K) over bar -> K (K) over bar and pi K -> pi K. The partial decay width and mass distributions of f(1) (1285) -> pi K (K) over bar are evaluated. We get a value for the partial decay width which, within errors, is in fair agreement with the experimental result. The contribution from the tree level diagrams is dominant, but the final state interactions have effects in the mass distributions. The predicted mass distributions are significantly different from phase space and tied to the K*(K) over bar – cc nature of the f(1) (1285) state.
|
|
|
Xie, J. J., Dai, L. R., & Oset, E. (2015). The low lying scalar resonances in the D-0 decays into K-s(0) and f(0)(500), f(0)(980), a(0)(980). Phys. Lett. B, 742, 363–369.
Abstract: The D-0 decay into K-s(0) and a scalar resonance, f(0)(500), f(0)(980), a(0)(980), are studied obtaining the scalar resonances from final state interaction of a pair of mesons produced in a first step in the D-0 decay into K-s(0) and the pair of pseudoscalar mesons. This weak decay is very appropriate for this kind of study because it allows to produce the three resonances in the same decay in a process that is Cabibbo-allowed, hence the rates obtained are large compared to those of (B) over bar (0) decays into J/psi and a scalar meson that have at least one Cabibbo-suppressedvertex. Concretely the a(0)(980) production is Cabibbo-allowedhere, while it cannot be seen in the (B) over bar (0)(s) decay into J/psi a(0)(980) and is doubly Cabibbo-suppressedin the (B) over bar (0) decay into J/psi a(0)(980) and has not been identified there. The fact that the three resonances can be seen in the same reaction, because there is no isospin conservation in the weak decays, offers a unique opportunity to test the ideas of the chiral unitary approach where these resonances are produced from the interaction of pairs of pseudoscalar mesons.
|
|
|
Xie, J. J., Albaladejo, M., & Oset, E. (2014). Signature of an h(1) state in the J/psi -> eta h(1) -> eta K*(0)(K)over-bar*(0) decay. Phys. Lett. B, 728, 319–322.
Abstract: The BES data on the J/psi -> eta K*(0)(K) over bar*(0) reaction show a clear enhancement in the K*(0)(K) over bar*(0) mass distribution close to the threshold of this channel. Such an enhancement is usually a signature of an L = 0 resonance around threshold, which in this case would correspond to an h1 state with quantum numbers I-G(J(Pc))= 0(-)(1(+-)). A state around 1800 MeV results from the interaction of the K*TC* using the local hidden gauge approach. We show that the peak observed in J/psi -> eta K*(0)(K) over bar*(0) naturally comes from the creation of this h(1) state with mass and width around 1830 MeV and 110 MeV, respectively. A second analysis, model independent, corroborates the first result, confirming the relationship of the enhancement in the invariant mass spectrum with the h(1) resonance.
|
|