|
Oset, E., Albaladejo, M., Xie, J. J., & Ramos, A. (2014). Recent developments on hadron interaction and dynamically generated resonances. Int. J. Mod. Phys. E, 23(7), 1461008–8pp.
Abstract: In this talk I report on the recent developments in the subject of dynamically generated resonances. In particular I discuss the gamma p -> K-0 Sigma+ and gamma n -> K-0 Sigma(0) reactions, with a peculiar behavior around the K*(0)Lambda threshold, due to a 1/2(-) resonance around 2035 MeV. Similarly, I discuss a BES experiment, J/psi -> eta K*(0) (K) over bar*(0) decay, which provides evidence for a new h(1) resonance around 1830 MeV that was predicted from the vector-vector interaction. A short discussion is then made about recent advances in the charm and beauty sectors.
|
|
|
Molina, R., Xie, J. J., Liang, W. H., Geng, L. S., & Oset, E. (2020). Theoretical interpretation of the D-s(+) -> pi(+)pi(0)eta decay and the nature of a(0)(980). Phys. Lett. B, 803, 135279–4pp.
Abstract: In a recent paper [I], the BESIII Collaboration reported the so-called first observation of pure W-annihi- lation decays D-s(+) -> a(0)(+) (980)pi(0) and D-s(+) -> a(0)(0)(980)pi(+). The measured absolute branching fractions are, however, puzzlingly larger than those of other measured pure W-annihilation decays by at least one order of magnitude. In addition, the relative phase between the two decay modes is found to be about 0 degrees. In this letter, we show that all these can be easily understood if the a(0)(980) is a dynamically generated state from (K) over barK and pi eta interactions in coupled channels. In such a scenario, the D-s(+) decay proceeds via internal W emission instead of W-annihilation, which has a larger decay rate than W-annihilation. The proposed decay mechanism and the molecular nature of the a(0)(980) also provide a natural explanation to the measured negative interference between the two decay modes.
|
|
|
Lu, J. X., Chen, H. X., Guo, Z. H., Nieves, J., Xie, J. J., & Geng, L. S. (2016). Lambda(c)(2595) resonance as a dynamically generated state: The compositeness condition and the large N-c evolution. Phys. Rev. D, 93(11), 114028–16pp.
Abstract: Recent studies have shown that the well-established Lambda(c) (2595) resonance contains a large meson-baryon component, which can vary depending on the specific formalism. In this work, we examine such a picture by utilizing the compositeness condition and the large number of colors (N-c) expansion. We examine three different models fulfilling two body unitarily in coupled-channels, and adopting renormalization schemes where the mass of the Lambda(c)(2595) resonance is well described, but not necessarily its width, since we do not consider three body channels and work at the isospin symmetric limit. Both approximations might have an effect larger on the width than on the mass. In this context, our studies show that the compositeness of the Lambda(c)(2595) depends on the number of considered coupled channels, and on the particular regularization scheme adopted in the unitary approaches and, therefore, is model dependent. In addition, we perform an exploratory study of the Lambda(c)(2595) in the large N-c expansion, within a scheme involving only the pi Sigma(c) and K Xi(c)', channels, whose dynamics is mostly fixed by chiral symmetry. In this context and formulating the leading-order interaction as a function of N-c, we show that for moderate N-c > 3 values, the mass and width of the Lambda(c)(2595) deviate from those of a genuine qqq baryon, implying the relevance of meson-baryon components in its wave function. Furthermore, we study the properties of the Lambda(c)(2595), in the strict N-c -> infinity limit, using an extension of the chiral Weinberg-Tomozawa interaction to an arbitrary number of flavors and colors. This latter study hints at the possible existence of a (perhaps) subdominant qqq component in the Lambda(c)(2595) resonance wave function, which would become dominant when the number of colors gets sufficiently large.
|
|
|
Wang, E., Xie, J. J., Geng, L. S., & Oset, E. (2019). The X(4140) and X(4160) resonances in the e(+)e(-) -> gamma J/psi phi reaction. Chin. Phys. C, 43(11), 113101–10pp.
Abstract: We investigate the J/psi phi invariant mass distribution in the e(+)e(-) -> gamma J/psi phi reaction at a center-of-mass energy of root s = 4.6 GeV measured by the BESIII collaboration, which concluded that no significant signals were observed for e(+)e(-) -> gamma J/psi phi because of the low statistics. We show, however, that the J/psi phi invariant mass distribution is compatible with the existence of the X(4140) state, appearing as a peak, and a strong cusp structure at the D-s*(D) over bar (s)* threshold, resulting from the molecular nature of the X(4160) state, which provides a substantial contribution to the reaction. This is consistent with our previous analysis of the B+ -> J psi phi K+ decay measured by the LHCb collaboration. We strongly suggest further measurements of this process with more statistics to clarify the nature of the X(4140) and X(4160) resonances.
|
|
|
Garcia-Recio, C., Geng, L. S., Nieves, J., Salcedo, L. L., Wang, E., & Xie, J. J. (2013). Low-lying even parity meson resonances and spin-flavor symmetry revisited. Phys. Rev. D, 87(9), 096006–18pp.
Abstract: We review and extend the model derived in Garcia-Recio et al. [Phys. Rev. D 83, 016007 (2011)] to address the dynamics of the low-lying even-parity meson resonances. This model is based on a coupled-channels spin-flavor extension of the chiralWeinberg-Tomozawa Lagrangian. This interaction is then used to study the S-wave meson-meson scattering involving members not only of the pi octet, but also of the rho nonet. In this work, we study in detail the structure of the SU(6)-symmetry-breaking contact terms that respect (or softly break) chiral symmetry. We derive the most general local (without involving derivatives) terms consistent with the chiral-symmetry-breaking pattern of QCD. After introducing sensible simplifications to reduce the large number of possible operators, we carry out a phenomenological discussion of the effects of these terms. We show how the inclusion of these pieces leads to an improvement of the description of the J(P) = 2(+) sector, without spoiling the main features of the predictions obtained in the original model in the JP = 0(+) and J(P) = 1(+) sectors. In particular, we find a significantly better description of the I-G(J(PC)) =0(+)(2(++)), 1(-)(2(++)) and the I(JP)=1/2(2(+)) sectors, which correspond to the f(2)(1270), a(2)(1320), and K-2(*)(1430) quantum numbers, respectively.
|
|
|
Sun, Z. F., Xie, J. J., & Oset, E. (2018). Bottom strange molecules with isospin 0. Phys. Rev. D, 97(9), 094031–9pp.
Abstract: Using the local hidden gauge approach, we study the possibility of the existence of bottom strange molecular states with isospin 0. We find three bound states with spin parity 0(+), 1(+), and 2(+) generated by the (K) over bar *B* and omega B-s(*) interaction, among which the state with spin 2 can be identified as B(s2)(*()5840). In addition, we also study the (K) over bar *B* and omega B-s(*) interaction and find a bound state which can be associated to B-s1(5830). In addition, the (K) over barB*, eta B-s(*)(K) over barB, and eta B-s systems are studied, and two bound states are predicted. We expect that further experiments can confirm our predictions.
|
|
|
Dias, J. M., Debastiani, V. R., Xie, J. J., & Oset, E. (2018). Doubly charmed Xi(cc) molecular states from meson-baryon interaction. Phys. Rev. D, 98(9), 094017–11pp.
Abstract: Stimulated by the new experimental LHCb findings associated with the Omega(c) states, some of which we have described in a previous work as being dynamically generated through meson-baryon interaction, we have extended this approach to make predictions for new Xi(cc) molecular states in the C = 2, S = 0, and I = 1/2 sector. These states manifest themselves as poles in the solution of the Bethe-Salpeter equation in coupled channels. The kernels of this equation were obtained using general Lagrangians coming from the hidden local gauge symmetry or massive Yang-Mills theory, and the interactions are dominated by the exchange of light vector mesons. The extension of this approach to the heavy sector stems from the realization that the dominant interaction corresponds to having the heavy quarks as spectators, which implies the preservation of the heavy quark symmetry. As a result, we get several states: three states from the pseudoscalar meson-baryon interaction with J(P) = 1/2(-), and masses around 3840, 4080 and 4090 MeV, and two at 3920 and 4150 MeV for J(P) = 3/2(-). Furthermore, from the vector meson-baryon interaction we get three states degenerate with J(P) 1/2(-) and 3/2(-) from 4220 MeV to 4290 MeV, and two more states around 4280 and 4370 MeV, degenerate with J(P) = 1/2(-), 3/2(-), and 5/2(-).
|
|
|
Dai, L. R., Xie, J. J., & Oset, E. (2015). Study of the f(2)(1270), f '(2)(1525), and (K)over-bar(2)*(1430), f(0)(1370) and f(0)(1710) production from psi(nS) and Upsilon(nS) decays. Phys. Rev. D, 91(9), 094013–6pp.
Abstract: Based on previous studies that support the important role of the f(2)(1270), f'(2)(1525), and (K) over bar (2)*(1430) resonances in the J/psi[psi(2S)] -> phi(omega)VV decays, we make an analysis of the analogous decays of Upsilon(1S) and Upsilon(2S), taking into account recent experimental data. In addition, we study the J/psi and psi(2S) radiative decays and we also made predictions for the radiative decay of Upsilon(1S) and Upsilon(2S) into gamma f(2)(1270), gamma f(2)'(1525), gamma f(0)(1370) and gamma f(0)(1710) comparing with the recent results of a CLEO experiment. We can compare our results for ratios of decay rates with eight experimental ratios and find agreement in all but one case, where experimental problems are discussed.
|
|
|
Lu, J. X., Wang, E., Xie, J. J., Geng, L. S., & Oset, E. (2016). Lambda(b) -> J/psi K-0 Lambda reaction and a hidden-charm pentaquark state with strangeness. Phys. Rev. D, 93(9), 094009–11pp.
Abstract: We study the Lambda(b) -> J/psi K-0 Lambda reaction considering both the K-0 Lambda interaction with its coupled channels and the J/psi Lambda interaction. The latter is described by taking into account the fact that there are predictions for a hidden-charm state with strangeness that couples to J/psi Lambda By using the coupling of the resonance to J/psi Lambda from these predictions, we show that a neat peak can be observed in the J/psi Lambda invariant mass distribution, rather stable under changes of unknown magnitudes. In some cases, one finds a dip structure associated to that state, but a signal of the state shows up in the J/psi Lambda spectrum.
|
|
|
Xie, J. J., & Oset, E. (2014). (B)over-bar(0) and (B)over-bar(s)(0) decays into J/psi and f(0)(1370), f(0)(1710), f(2)(1270), f(2)'(1525), K-2*(1430). Phys. Rev. D, 90(9), 094006–7pp.
Abstract: We make predictions for the ratios of branching fractions of (B) over bar (0) and (B) over bar (0)(s) decays into J/psi and the scalar mesons f(0)(1370), f(0)(1710) or tensor mesons f(2)(1270), f(2)'(1525), K-2*(1430). The theoretical approach is based on results of chiral unitary theory where these resonances are shown to be generated from the vector meson-vector meson interaction. Eight independent ratios can be predicted, and comparison is made with the recent data on (B) over bar (0)(s) decay into J/psi f(2)'(1525) versus the (B) over bar (0)(s) decay into J/psi f(2)(1270).
|
|