|
Xie, J. J., & Oset, E. (2019). Search for the Sigma* state in Lambda(+)(c) -> pi(+)pi(0)pi(-)Sigma(+) decay by triangle singularity. Phys. Lett. B, 792, 450–453.
Abstract: A Sigma* resonance with spin-parity J(P) = 1/2(-) and mass in the vicinity of the (K) over barN threshold has been predicted in the unitary chiral approach and inferred from the analysis of CLAS data on the gamma p -> K+pi(0)Sigma(0) reaction. In this work, based on the dominant Cabibbo favored weak decay mechanism, we perform a study of Lambda(+)(c) -> pi(+)pi(0)Sigma* with the possible Sigma* state decaying into pi(-)Sigma(+) through a triangle diagram. This process is initiated by Lambda(+)(c) -> pi(+)(K) over bar *N, then the (K) over bar* decays into (K) over bar pi and (K) over barN produce the Sigma* through a triangle loop containing (K) over bar *N (K) over bar which develops a triangle singularity. We show that the pi(-)Sigma(+) state is generated from final state interaction of (K) over barN in S-wave and isospin I = 1, and the Lambda(+)(c) -> pi(+)pi(0)pi(-)Sigma(+) decay can be used to study the possible Sigma* state around the (K) over barN threshold. The proposed decay mechanism can provide valuable information on the nature of the Sigma* resonance and can in principle be tested by facilities such as LHCb, BelleII and BESIII.
|
|
|
Xie, J. J., & Oset, E. (2016). Role of the f(1)(1285) state in the J/ psi -> phi(K)over-barK* and J/psi -> phi f(1) (1285) decays. Phys. Lett. B, 753, 591–594.
Abstract: We study the role of the f(1)(1285) resonance in the decays of J/psi -> phi(K) over barK* and J/psi -> f(1) (1285). The theoretical approach is based on the results of chiral unitary theory where the f1(1285) resonance is dynamically generated from the K* (K) over bar -c.c. interaction. In order to further test the dynamical nature of the f(1)(1285) state, we investigate the J/psi -> phi(K) over barK* decay close to the (K) over barK* threshold and make predictions for the ratio of the invariant mass distributions of the J/psi -> phi(K) over barK* decay and the J/psi -> phi f(1)(1285) partial decay width with all the parameters of the mechanism fixed in previous studies. The results can be tested in future experiments and therefore offer new clues on the nature of the f(1) (1285) state.
|
|
|
Xie, J. J., & Oset, E. (2015). Photoproduction of the f(2)(1270) resonance. Eur. Phys. J. A, 51(9), 111–7pp.
Abstract: We have performed a calculation of the gamma(p) -> pi(+) p-p reaction, where the two pions have been separated in D-wave producing the f(2)(1270) resonance. We use elements of the local hidden gauge approach that provides the interaction of vector mesons in which the f(2)(1270) resonance appears as rho-rho. molecular state in L = 0 and spin 2. The vector meson dominance, incorporated in the local hidden gauge approach converts a photon into a rho(0) meson and the other meson connects the photon with the proton. The picture is simple and has no free parameters, since the parameters of the theory have been constrained in the previous study of the vector-vector states. In a second step we introduce new elements, not present in the local hidden gauge approach, adapting the rho propagator to Regge phenomenology and introducing the rho NN tensor coupling. We find that both the differential cross section as well as the t dependence of the cross section are in good agreement with the experimental results and provide support for the molecular picture of the f(2)(1270) resonance in the first baryonic reaction where it has been tested.
|
|
|
Xie, J. J., & Oset, E. (2014). (B)over-bar(0) and (B)over-bar(s)(0) decays into J/psi and f(0)(1370), f(0)(1710), f(2)(1270), f(2)'(1525), K-2*(1430). Phys. Rev. D, 90(9), 094006–7pp.
Abstract: We make predictions for the ratios of branching fractions of (B) over bar (0) and (B) over bar (0)(s) decays into J/psi and the scalar mesons f(0)(1370), f(0)(1710) or tensor mesons f(2)(1270), f(2)'(1525), K-2*(1430). The theoretical approach is based on results of chiral unitary theory where these resonances are shown to be generated from the vector meson-vector meson interaction. Eight independent ratios can be predicted, and comparison is made with the recent data on (B) over bar (0)(s) decay into J/psi f(2)'(1525) versus the (B) over bar (0)(s) decay into J/psi f(2)(1270).
|
|
|
Xie, J. J., & Oset, E. (2012). The DN, pi Sigma(c) interaction in finite volume and the Lambda(c)(2595) resonance. Eur. Phys. J. A, 48(10), 146–10pp.
Abstract: In this work the interaction of the coupled channels DN and pi Sigma(c) in an SU(4) extrapolation of the chiral unitary theory, where the Lambda(c)(2595) resonance appears as dynamically generated from that interaction, is extended to produce results in finite volume. Energy levels in the finite box are evaluated and, assuming that they would correspond to lattice results, the inverse problem of determining the phase shifts in the infinite volume from the lattice results is solved. We observe that it is possible to obtain accurate pi Sigma(c) phase shifts and the position of the Lambda(c)(2595) resonance, but it requires the explicit consideration of the two coupled channels. We also observe that some of the energy levels in the box are attached to the closed DN channel, such that their use to induce the pi Sigma(c) phase shifts via Luscher's formula leads to incorrect results.
|
|
|
Xie, J. J., Oset, E., & Geng, L. S. (2016). Photoproduction of the f(2)'(1525), a(2)(1320), and K-2(*) (1430). Phys. Rev. C, 93(2), 025202–8pp.
Abstract: Assuming that the f(2)'(1525), a(2)(1320), and K-2(*) (1430) resonances are dynamically generated states from vector-meson-vector-meson interactions in the s-wave with spin S = 2, we study the gamma p -> f(2)'(1525)p, gamma p -> a(2)(0)(1320)p, and gamma p -> K-2(*)(1430)Lambda(Sigma) reactions. These reactions proceed in the following way: the incoming photon first mutates into a rho(0), omega, or phi meson via vector-meson dominance, which then interacts with the rho(0), omega, or K* emitted by the incoming proton to form the tensor mesons f(2)(')(1525), a(2)(1320), and K-2(*)(1430). The picture is simple and has no free parameters, as all the parameters of the mechanism have been fixed in previous studies. We predict the differential and total cross sections of these reactions. The results can be tested in future experiments and therefore offer new clues about the nature of these tensor states.
|
|
|
Xie, J. J., Wang, E., & Nieves, J. (2014). Re-analysis of the A(1520) photoproduction reaction. Phys. Rev. C, 89(1), 015203–10pp.
Abstract: Based on previous studies that support the important role of the N*(2120)D-13 resonance in the gamma p -> K+ A(1520) reaction, we make a re-analysis of this A(1520) photoproduction reaction taking into account the recent CLAS differential cross-section data. In addition to the contact, t-channel (K) over bar exchange, s-channel nucleon pole, and N*(2120) [previously called N*(2080)] resonance contributions, which have been considered in previous works, we also study the u-channel A(1115) hyperon pole term. The latter mechanism has always been ignored in all theoretical analysis, which has mostly relied on the very forward K+ angular LEPS data. It is shown that when the contributions from the N*(2120) resonance and the A(1115) hyperon are taken into account, both the new CLAS and the previous LEPS data can be simultaneously described. We also show that the contribution from the u-channel A(1115) pole term produces an enhancement for large K+ angles, and it becomes more and more relevant as the photon energy increases, being essential to describe the CLAS differential cross sections at backward angles. Furthermore, we find that the new CLAS data also favor the existence of the N*(2120) resonance and that these measurements can be used to further constrain its properties.
|
|
|
Xie, J. J., Wang, E., & Zou, B. S. (2014). Role of the Delta*(1940) in the pi(+) p -> K+ Sigma(+)(1385) and pp -> nK(+) Sigma(+)(1385) reactions. Phys. Rev. C, 90(2), 025207–11pp.
Abstract: The pp -> nK(+)Sigma(+)(1385) reaction is a very good isospin 3/2 filter for studying Delta(++)* resonance decaying to K+Sigma(+)(1385). Within the effective Lagrangian method, we investigate the Sigma (1385) (spin parity J(P) = 3/2(+)) hadronic production in the pi(+) p -> K+Sigma(+)(1385) and pp -> nK(+)Sigma(+)(1385) reactions. For the pi(+) p -> K+Sigma(+)(1385) reaction, in addition to the “background” contributions from t-channel K*(0) exchange and u-channel Lambda(1115) and Sigma(0)(1193) exchange, we also consider the contribution from the s-channel Delta*(1940) resonance, which has significant coupling to the K Sigma(1385) channel. We show that the inclusion of the Delta*(1940) resonance leads to a fairly good description of the low-energy experimental total cross section data of pi(+)p -> K+Sigma(+)(1385) reaction. Basing on the study of the pi(+)p -> K+Sigma(+)(1385) reaction and with the assumption that the excitation of Delta*(1940) resonance dominates the pp -> nK(+)Sigma(+)(1385) reaction, we calculate the total and differential cross sections of the pp -> nK(+)Sigma(+)(1385) reaction. It is shown that the new experimental data support the important role played by the Delta*(1940) resonance with a mass in the region of 1940 MeV and a width of around 200 MeV. We also demonstrate that the invariant mass distribution and the Dalitz plot provide direct information of the Sigma(+)(1385) production, which can be tested by future experiments.
|
|
|
Xie, J. J., & Wilkin, C. (2010). Associated strangeness production in the pp -> pK(+) K(-)p and pp -> pK(+)pi(0)Sigma(0) reactions. Phys. Rev. C, 82(2), 025210–6pp.
Abstract: The total and differential cross sections for associated strangeness production in the pp -> pK(+) K(-)p and pp -> pK(+)pi(0)Sigma(0) reactions have been studied in a unified approach using an effective Lagrangian model. It is assumed that both the K(-)p and pi(0)Sigma(0) final states originate from the decay of the Lambda(1405) that was formed in the production chain pp -> p(N*(1535). K+ Lambda(1405)). The available experimental data are well reproduced, especially the ratio of the two total cross sections, which is much less sensitive to the particular model of the entrance channel. The significant coupling of the N*(1535) to Lambda(1405)K is further evidence for large ss components in the quark wave function of the N*(1535).
|
|