|
Xie, J. J., Chen, H. X., & Oset, E. (2011). The pp -> p Lambda K(+) and pp -> p Sigma(0)K(+) reactions with chiral dynamics. Phys. Rev. C, 84(3), 034004–8pp.
Abstract: We report on a theoretical study of the pp -> p Lambda K(+) and pp -> p Sigma(0)K(+) reactions near threshold using a chiral dynamical approach. The production process is described by single-pion and single-kaon exchange. The final state interactions of nucleon-hyperon, K-hyperon, and K-nucleon systems are also taken into account. We show that our model leads to a fair description of the experimental data on the total cross section of the pp -> p Lambda K(+) and pp -> p Sigma(0)K(+) reactions. We find that the experimental observed strong suppression of Sigma(0) production compared to Lambda production at the same excess energy can be explained. However, ignorance of phases between some amplitudes does not allow one to properly account for the nucleon-hyperon final state interaction for the pp -> p Sigma(0)K(+) reaction. We also demonstrate that the invariant mass distribution and the Dalitz plot provide direct information about the Lambda and Sigma(0) production mechanisms and may be tested by experiments at COSY or HIRFL-CSR.
|
|
|
Xie, J. J., Dai, L. R., & Oset, E. (2015). The low lying scalar resonances in the D-0 decays into K-s(0) and f(0)(500), f(0)(980), a(0)(980). Phys. Lett. B, 742, 363–369.
Abstract: The D-0 decay into K-s(0) and a scalar resonance, f(0)(500), f(0)(980), a(0)(980), are studied obtaining the scalar resonances from final state interaction of a pair of mesons produced in a first step in the D-0 decay into K-s(0) and the pair of pseudoscalar mesons. This weak decay is very appropriate for this kind of study because it allows to produce the three resonances in the same decay in a process that is Cabibbo-allowed, hence the rates obtained are large compared to those of (B) over bar (0) decays into J/psi and a scalar meson that have at least one Cabibbo-suppressedvertex. Concretely the a(0)(980) production is Cabibbo-allowedhere, while it cannot be seen in the (B) over bar (0)(s) decay into J/psi a(0)(980) and is doubly Cabibbo-suppressedin the (B) over bar (0) decay into J/psi a(0)(980) and has not been identified there. The fact that the three resonances can be seen in the same reaction, because there is no isospin conservation in the weak decays, offers a unique opportunity to test the ideas of the chiral unitary approach where these resonances are produced from the interaction of pairs of pseudoscalar mesons.
|
|
|
Xie, J. J., Geng, L. S., & Oset, E. (2017). f(2)(1810) as a triangle singularity. Phys. Rev. D, 95(3), 034004–6pp.
Abstract: We perform calculations showing that a source producing K*K* in J = 2 and L = 0 gives rise to a triangle singularity at 1810 MeV with a width of about 200 MeV from the mechanism K*-> pi K and then KK* merging into the a alpha(1)(1260) resonance. We suggest that this is the origin of the present f(2)(1810) resonance and propose to look at the pa pi alpha(1)(1260) mode in several reactions to clarify the issue.
|
|
|
Xie, J. J., Liang, W. H., & Oset, E. (2019). eta-He-4 interaction from the dd->eta He-4 reaction near threshold. Eur. Phys. J. A, 55(1), 6–8pp.
Abstract: .We analyze the data on the total cross sections for the dd4 He reaction close to threshold and look for possible 4 He bound states. We develop a framework in which the 4 He optical potential is the key ingredient, rather than parameterizing the scattering matrix, as is usually done. The strength of this potential, together with some production parameters, are fitted to the available experimental data. The relationship of the scattering matrix to the optical potential is established using the Bethe-Salpeter equation and the 4 He loop function incorporates the range of the interaction given by the experimental He-4 density. However, when we look for poles of the scattering matrix, we get poles in the bound region, poles in the positive energy region or no poles at all. If we further restrict the results with constraints from a theoretical model with all its uncertainties the bound states are not allowed. However, we find a bump structure in |T|2 of the 4 He 4 He scattering amplitude below threshold for the remaining solutions.
|
|
|
Xie, J. J., Liang, W. H., & Oset, E. (2018). Hidden charm pentaquark and Lambda(1405) in the Lambda(0)(b) -> eta K-c(-) p(pi Sigma) reaction. Phys. Lett. B, 777, 447–452.
Abstract: We have performed a study of the Lambda(0)(b) -> eta K-c(-) p and Lambda(0)(b) -> eta(c)pi Sigma reactions based on the dominant Cabibbo favored weak decay mechanism. We show that the K- p produced only couples to Lambda* states, not Sigma* and that the pi Sigma state is only generated from final state interaction of (K) over barN and eta Lambda channels which are produced in a primary stage. This guarantees that the pi Sigma state is generated in isospin I=0 and we see that the invariant mass produces a clean signal for the Lambda(1405) of higher mass at 1420 MeV. We also study the eta(c)p final state interaction, which is driven by the excitation of a hidden charm resonance predicted before. We relate the strength of the different invariant mass distributions and find similar strengths that should be clearly visible in an ongoing LHCb experiment. In particular we predict that a clean peak should be seen for a hidden charm resonance that couples to the eta(c)p channel in the invariant eta(c)p mass distribution.
|
|
|
Xie, J. J., Liang, W. H., & Oset, E. (2016). (K)over-bar-induced formation of the f(0)(980) and a(0)(980) resonances on proton targets. Phys. Rev. C, 93(3), 035206–8pp.
Abstract: We perform a calculation of the cross section for nine reactions induced by (K) over bar scattering on protons. The reactions studied are K- p -> Lambda pi(+)pi(-), K- p -> Sigma(0)pi(+)pi(-), K- p -> Lambda pi(0)eta, K- p -> Sigma(0)pi(0)eta, K- p -> Sigma(+)pi(-)eta, (K) over bar (0) p -> Lambda pi(+)eta, (K) over bar (0) p -> Sigma(0)pi(+)eta, (K) over bar (0) p -> Sigma(+)pi(+)pi(-), and (K) over bar (0) p -> Sigma+pi(0)eta. We find that in the reactions producing pi(+)pi(-), a clear peak for the f(0)(980) resonance is found, while no trace of f(0)(500) appears. Similarly, in the cases of p. production, a strong peak is found for the a(0)(980) resonance, with the characteristic strong cusp shape. Cross sections and invariant mass distributions are evaluated which should serve, by comparing them with future data, to test the dynamics of the chiral unitary approach used for the evaluations and the nature of these resonances.
|
|
|
Xie, J. J., Liang, W. H., Oset, E., Moskal, P., Skurzok, M., & Wilkin, C. (2017). Determination of the eta He-3 threshold structure from the low energy pd -> eta He-3 reaction. Phys. Rev. C, 95(1), 015202–9pp.
Abstract: We analyze the data on cross sections and asymmetries for the pd -> eta He-3 reaction close to threshold and look for bound states of the eta He-3 system. Rather than parameterizing the scattering matrix, as is usually done, we develop a framework in which the eta He-3 optical potential is the key ingredient, and its strength, together with some production parameters, are fitted to the available experimental data. The relationship of the scattering matrix to the optical potential is established using the Bethe-Salpeter equation and the eta He-3 loop function incorporates the range of the interaction given by the empirical He-3 density. We find a local Breit-Wigner form of the eta He-3 amplitude T below threshold with a clear peak in vertical bar T vertical bar(2), which corresponds to an eta He-3 binding of about 0.3 MeV and a width of about 3 MeV. By fitting the potential we can also evaluate the eta He-3 scattering length, including its sign, thus resolving the ambiguity in the former analyses.
|
|
|
Xie, J. J., Martinez Torres, A., & Oset, E. (2011). Faddeev fixed-center approximation to the N K K(bar) system and the signature of a N*(1920)(1/2+) state. Phys. Rev. C, 83(6), 065207–8pp.
Abstract: We perform a calculation for the three-body N (K) over barK scattering amplitude by using the fixed-center approximation to the Faddeev equations, taking the interaction between N and (K) over bar, N and K, and (K) over bar and K from the chiral unitary approach. The resonant structures show up in the modulus squared of the three-body scattering amplitude and suggest that a N (K) over barK hadron state can be formed. Our results are in agreement with others obtained in previous theoretical works, which claim a new N* resonance around 1920 MeV with spin-parity J(P) = 1/2(+). The existence of these previous works allows us to test the accuracy of the fixed center approximation in the present problem and sets the grounds for possible application in similar problems, as an explorative tool to determine bound or quasibound three-hadron systems.
|
|
|
Xie, J. J., Martinez Torres, A., Oset, E., & Gonzalez, P. (2011). Plausible explanation for the Delta(5/2)+(2000) puzzle. Phys. Rev. C, 83(5), 055204–11pp.
Abstract: From a Faddeev calculation for the pi-(Delta rho)(N5/2)-(1675) system we show the plausible existence of three dynamically generated I (J(P)) = 3/2(5/2(+)) baryon states below 2.3 GeV, whereas only two resonances, Delta(5/2)+ (1905)( ) and Delta(5/2)+(2000)(**), are cataloged in the Particle Data Book Review. Our results give theoretical support to data analyses extracting two distinctive resonances, Lambda(5/2)+(similar to 1740) and Lambda(5/2)+(similar to 2200), from which the mass of Delta(5/2)+ (2000) is estimated. We propose that these two resonances should be cataloged instead of Delta(5/2)+(2000). This proposal gets further support from the possible assignment of the other baryon states found in the approach in the I = 1/2, 3/2 with J(P) = 1/2(+), 3/2(+), 5/(2)+ sectors to known baryonic resonances. In particular, Delta(1/2)+(1750)(*) is naturally interpreted as a pi N-1/2-(1650) bound state.
|
|
|
Xie, J. J., & Nieves, J. (2010). Role of the N * (2080) resonance in the (gamma)over-right-arrowp -> K+ Lambda(1520) reaction. Phys. Rev. C, 82(4), 045205–8pp.
Abstract: We investigate the Lambda (1520) photoproduction in the (gamma) over right arrowp -> K+ Lambda(1520) reaction within the effective Lagrangian method near threshold. In addition to the “background” contributions from the contact, t-channel K-exchange, and s-channel nucleon pole terms, which were already considered in previous studies, the contribution from the nucleon resonance N*(2080) (spin-parity J(P) = 3/2(-)) is also considered. We show that the inclusion of the nucleon resonance N*(2080) leads to a fairly good description of the new LEPS differential cross-section data, and that these measurements can be used to determine some of the properties of this latter resonance. However, serious discrepancies appear when the predictions of the model are compared to the photon-beam asymmetry, which was also measured by the LEPS Collaboration.
|
|