|
Dote, A., Bayar, M., Xiao, C. W., Hyodo, T., Oka, M., & Oset, E. (2013). A narrow quasi-bound state of the DNN system. Nucl. Phys. A, 914, 499–504.
Abstract: We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector-meson exchange picture in which a resonant A(c)(2595) is dynamically generated as a DN quasi-bound state, similarly to the A(1405) as a (K) over barN one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J(pi) =0(-), I = 1/2) is found to be a narrow quasi-bound state below A(c)(2595)N threshold: total binding energy similar to 225 MeV and mesonic decay width similar to 25 MeV. On the other hand, the J(pi) =1(-) state is considered to be a scattering state of A(c)(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J(pi) = 0, I = 1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.
|
|
|
Molina, R., Liang, W. H., Xiao, C. W., Sun, Z. F., & Oset, E. (2024). Two states for the Ξ(1820) resonance. Phys. Lett. B, 856, 138872–4pp.
Abstract: We recall that the chiral unitary approach for the interaction of pseudoscalar mesons with the baryons of the decuplet predicts two states for the Xi(1820) resonance, one with a narrow width and the other one with a large width. We contrast this fact with the recent BESIII measurement of the K- Lambda mass distribution in the psi(3686) decay to K- Lambda Xi(+), which demands a width much larger than the average of the PDG, and show how the consideration of the two Xi(1820) states provides a natural explanation to the experimental data.
|
|
|
Feijoo, A., Wang, W. F., Xiao, C. W., Wu, J. J., Oset, E., Nieves, J., et al. (2023). A new look at the P-cs states from a molecular perspective. Phys. Lett. B, 839, 137760–7pp.
Abstract: We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.
|
|
|
Xiao, C. W., Nieves, J., & Oset, E. (2019). Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry. Phys. Lett. B, 799, 135051–10pp.
Abstract: We have studied the meson-baryon S-wave interaction in the isoscalar hidden-charm strange sector with the coupled-channels, eta(c)Lambda, J/psi Lambda, (D) over bar Xi(c), (D) over bar (s)Lambda(c), (D) over bar Xi(c)', (D) over bar*Lambda(c), (D) over bar*Xi(c)', (D) over bar*Xi*(c) in J(p) = 1/2(-), J/psi Lambda, (D) over bar*Xi(c), (D) over bar (s)*Lambda(c), (D) over bar*Xi(c)', (D) over bar Xi(c)*, (D) over bar*Xi(c)* in 3/2(-) and (D) over bar*Xi(c)* in 5/2(-). We impose constraints of heavy quark spin symmetry in the interaction and obtain the non vanishing matrix elements from an extension of the local hidden gauge approach to the charm sector. The ultraviolet divergences are renormalized using the same meson-baryon-loops regulator previously employed in the non-strange hidden charm sector, where a good reproduction of the properties of the newly discovered pentaquark states is obtained. We obtain five states of 1/2(-), four of 3/2(-) and one of 5/2(-), which could be compared in the near future with forthcoming LHCb experiments. The 5/2(-), three of the 3/2(-) and another three of the 1/2(-) resonances are originated from isoscalar (D) over bar (()*())Xi(c)' and (D) over bar (()*()) Xi(c)* interactions. They should be located just few MeV below the corresponding thresholds (4446, 4513, 4588 and 4655 MeV), and would be SU(3)-siblings of the isospin 1/2 (D) over bar (()*())Sigma(()(c)*()) quasi-bound states previously found, and that provided a robust theoretical description of the P-c(4440), P-c(4457) and P-c(4312) LHCb exotic states. The another two 1/2(-) and 3/2(-) states obtained in this work are result of the (D) over bar (()*())Xi(c)- D-s(()*()) Lambda(c) coupled-channels isoscalar interaction, are significantly broader than the others, with widths of the order of 15 MeV, being (D) over bar (()(s)*())Lambda(c) the dominant decay channel.
|
|
|
Molina, R., Xiao, C. W., Liang, W. H., & Oset, E. (2024). Correlation functions for the N*(1535) and the inverse problem. Phys. Rev. D, 109(5), 054002–10pp.
Abstract: The N*(1535) can be dynamically generated in the chiral unitary approach with the coupled channels, K0E+; K+E0; K+A, and eta p. In this work, we evaluate the correlation functions for every channel and face the inverse problem. Assuming the correlation functions to correspond to real measurements, we conduct a fit to the data within a general framework in order to extract the information contained in these correlation functions. The bootstrap method is used to determine the uncertainties of the different observables, and we find that, assuming errors of the same order than in present measurements of correlation functions, one can determine the scattering length and effective range of all channels with a very good accuracy. Most remarkable is the fact that the method predicts the existence of a bound state of isospin 12 nature around the mass of the N*(1535) with an accuracy of 6 MeV. These results should encourage the actual measurement of these correlation functions (only the K+A one is measured so far), which can shed valuable light on the relationship of the N*(1535) state to these coupled channels, a subject of continuous debate.
|
|
|
Xiao, C. W., Dias, J. M., Dai, L. R., Liang, W. H., & Oset, E. (2024). Triangle singularity in the J/ψ → ϕ π+ a−0(π−η) ,ϕ π− a+0(π+η) decays. Phys. Rev. D, 109(7), 074033–11pp.
Abstract: We study the J= psi -> phi pi + a 0 ( 980 ) – ( a – 0 -> pi – eta ) decay, evaluating the double mass distribution in terms of the pi – eta and pi + a – 0 invariant masses. We show that the pi – eta mass distribution exhibits the typical cusp structure of the a 0 ( 980 ) seen in recent high statistics experiments, and the pi + a – 0 spectrum shows clearly a peak around M inv ( pi + a – 0 ) = 1420 MeV, corresponding to a triangle singularity. When integrating over the two invariant masses we find a branching ratio for this decay of the order of 10 – 5 , which is easily accessible in present laboratories. We also call attention to the fact that the signal obtained is compatible with a bump experimentally observed in the eta pi + pi – mass distribution in the J= psi -> phi eta pi + pi – decay and encourage further analysis to extract from there the phi pi + a – 0 and phi pi – a + 0 decay modes.
|
|
|
Xiao, C. W., Nieves, J., & Oset, E. (2019). Heavy quark spin symmetric molecular states from (D)over-bar(()*())Sigma(()(c)*()) and other coupled channels in the light of the recent LHCb pentaquarks. Phys. Rev. D, 100(1), 014021–6pp.
Abstract: We consider the (D) over bar (()*())Sigma(()(c)*()) states, together with J/psi N and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb Collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as 1/2(-) (D) over bar Sigma(c), 1/2(-) (D) over bar*Sigma(c), and 3/2(-) (D) over bar*Sigma(c), and the isospin I = 1/2. We find another state around 4374 MeV, of the 3/2(-) (D) over bar Sigma(c)* structure, for which indications appear in the experimental spectrum. Two other near degenerate states of a 1/2(-) (D) over bar*Sigma(c)* and 3/2(-) (D) over bar*Sigma(c)* nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a 5/2(-) (D) over bar*Sigma(c)* state at the same energy appears, which however does not couple to J/psi p in an S wave, and hence, it is not expected to show up in the LHCb experiment.
|
|
|
Xiao, C. W. (2015). States generated in the K-multi-rho interactions. Phys. Rev. D, 92(5), 054011–16pp.
Abstract: In the present work, we use three-body interaction formalism to investigate the K-multi-rho interactions. First, we reproduce the resonances f(2)(1270) and K-1(1270) in the rho rho and rho K two-body interactions, respectively, as the clusters of the fixed-center approximation. Then, we study the three-body K-rho rho(f(2)) and rho-rho K(K-1) interactions with the fixed-center approximation of the Faddeev equations. Furthermore, we extrapolate the formalism to study the four-body, five-body, and six-body systems containing one K meson and multiple rho mesons. In our research, without introducing any free parameters, we generate the K-2(1770) state in the three-body interaction with the mass of 1707 MeV and a width about 113 MeV, which are consistent with the experiments. We also find a clear resonant structure in our results of the five-body interaction, with a mass 2505 MeV and a width about 32 MeV or more, which is associated with the K-4(2500) state, where we obtain consistent results with the experimental findings. Furthermore, we predict some new states in the other many-body interactions, K-3(2080), K-5(2670) (isospin I = 1/2), and K-4(2640) (isospin I = 3/2), with uncertainties.
|
|
|
Liang, W. H., Xiao, C. W., & Oset, E. (2014). Baryon states with open beauty in the extended local hidden gauge approach. Phys. Rev. D, 89(5), 054023–15pp.
Abstract: In this paper, we examine the interaction of (B) over barN, (B) over bar Delta, (B) over bar *N, and (B) over bar*Delta states, together with their coupled channels, by using a mapping from the light meson sector. The assumption that the heavy quarks act as spectators at the quark level automatically leads us to the results of the heavy quark spin symmetry for pion exchange and reproduces the results of the Weinberg Tomozawa term, coming from light vector exchanges in the extended local hidden gauge approach. With this dynamics we look for states dynamically generated from the interaction and find two states with nearly zero width, which we associate to the A(b)(5912) and A(b)(5920) states. The states couple mostly to (B) over bar *N, which are degenerate with the Weinberg Tomozawa interaction. The difference of masses between these two states, with J = 1/2 and 3/2, respectively, is due to pion exchange connecting these states to intermediate (B) over barN states. In addition to these two A(b) states, we find three more states with I = 0, one of them nearly degenerate in two states of J = 1/2, 3/2. Furthermore, we also find eight more states in I = 1, two of them degenerate in J = 1/2, 3/2, and another two degenerate in J = 1/2, 3/2, 5/2.
|
|
|
Ozpineci, A., Xiao, C. W., & Oset, E. (2013). Hidden beauty molecules within the local hidden gauge approach and heavy quark spin symmetry. Phys. Rev. D, 88(3), 034018–14pp.
Abstract: Using a coupled channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-meson interaction with hidden beauty and obtain several new states. Both I = 0 and I = 1 states are analyzed, and it is shown that in the I = 1 sector, the interactions are too weak to create any bound states within our framework. In total, we predict with confidence the existence of six bound states and six more possible weakly bound states. The existence of these weakly bound states depends on the influence of the coupled channel effects.
|
|