|
Lin, J. X., Chen, H. X., Liang, W. H., Xiao, C. W., & Oset, E. (2024). (B)over-bars0 → Ds1(2460)+ K-, Ds1(2536)+ K- and the nature of the two Ds1 resonances. Eur. Phys. J. C, 84(4), 439–8pp.
Abstract: Starting from the molecular picture for the D-s1(2460) and D-s1(2536) resonances, which are dynamically generated by the interaction of coupled channels, the most important of which are the D* K for the D-s1(2460) and DK* for the D-s1(2536), we evaluate the ratio of decay widths for the (B) over bar (0)(s) -> D-s1(2460)(+) K- and (B) over bar (0)(s) -> D-s1(2536)(+) K- decays, the latter of which has been recently investigated by the LHCb collaboration, and we obtain a ratio of the order of unity. The present results should provide an incentive for the related decay into the D-s1(2460) resonance to be performed, which would provide valuable information on the nature of these two resonances.
|
|
|
Dote, A., Bayar, M., Xiao, C. W., Hyodo, T., Oka, M., & Oset, E. (2013). A narrow quasi-bound state of the DNN system. Nucl. Phys. A, 914, 499–504.
Abstract: We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector-meson exchange picture in which a resonant A(c)(2595) is dynamically generated as a DN quasi-bound state, similarly to the A(1405) as a (K) over barN one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J(pi) =0(-), I = 1/2) is found to be a narrow quasi-bound state below A(c)(2595)N threshold: total binding energy similar to 225 MeV and mesonic decay width similar to 25 MeV. On the other hand, the J(pi) =1(-) state is considered to be a scattering state of A(c)(2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J(pi) = 0, I = 1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson.
|
|
|
Feijoo, A., Wang, W. F., Xiao, C. W., Wu, J. J., Oset, E., Nieves, J., et al. (2023). A new look at the P-cs states from a molecular perspective. Phys. Lett. B, 839, 137760–7pp.
Abstract: We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.
|
|
|
Liang, W. H., Xiao, C. W., & Oset, E. (2014). Baryon states with open beauty in the extended local hidden gauge approach. Phys. Rev. D, 89(5), 054023–15pp.
Abstract: In this paper, we examine the interaction of (B) over barN, (B) over bar Delta, (B) over bar *N, and (B) over bar*Delta states, together with their coupled channels, by using a mapping from the light meson sector. The assumption that the heavy quarks act as spectators at the quark level automatically leads us to the results of the heavy quark spin symmetry for pion exchange and reproduces the results of the Weinberg Tomozawa term, coming from light vector exchanges in the extended local hidden gauge approach. With this dynamics we look for states dynamically generated from the interaction and find two states with nearly zero width, which we associate to the A(b)(5912) and A(b)(5920) states. The states couple mostly to (B) over bar *N, which are degenerate with the Weinberg Tomozawa interaction. The difference of masses between these two states, with J = 1/2 and 3/2, respectively, is due to pion exchange connecting these states to intermediate (B) over barN states. In addition to these two A(b) states, we find three more states with I = 0, one of them nearly degenerate in two states of J = 1/2, 3/2. Furthermore, we also find eight more states in I = 1, two of them degenerate in J = 1/2, 3/2, and another two degenerate in J = 1/2, 3/2, 5/2.
|
|
|
Liang, W. H., Uchino, T., Xiao, C. W., & Oset, E. (2015). Baryon states with open charm in the extended local hidden gauge approach. Eur. Phys. J. A, 51(2), 16–14pp.
Abstract: In this paper we examine the interaction of DN and D* N states, together with their coupled channels, by using an extension of the local hidden gauge formalism from the light meson sector, which is based on heavy quark spin symmetry. The scheme is based on the use of the impulse approximation at the quark level, with the heavy quarks acting as spectators, which occurs for the dominant terms where there is the exchange of a light meson. The pion exchange and the Weinberg-Tomozawa interactions are generalized and with this dynamics we look for states generated from the interaction, with a unitary coupled channels approach that mixes the pseudoscalar-baryon and vector-baryon states. We find two states with nearly zero width, which are associated to the I > (c) (2595) and I > (c) (2625). The lower state, with J (P) = 1/2(-), couples to DN and D* N, and the second one, with J (P) = 3/2(-), to D* N. In addition to these two I > (c) states, we find four more states with I = 0, one of them nearly degenerate in two states of J (P) = 1/2, 3/2. Furthermore we find three states in I = 1, two of them degenerate in J = 1/2, 3/2.
|
|
|
Xiao, C. W., Nieves, J., & Oset, E. (2013). Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons. Phys. Rev. D, 88(5), 056012–20pp.
Abstract: We present a coupled channel unitary approach to obtain states dynamically generated from the meson-baryon interaction with hidden charm, using constraints of heavy quark spin symmetry. As a basis of states, we use (D) over barB, (D) over bar *B states, with B baryon charmed states belonging to the 20 representations of SU(4) with J(P) = 1/2(+), 3/2(+). In addition we also include the eta N-c and J/psi N states. The inclusion of these coupled channels is demanded by heavy quark spin symmetry, since in the large m(Q) limit the D and D* states are degenerate and are obtained from each other by means of a spin rotation, under which QCD is invariant. The novelty in the work is that we use dynamics from the extrapolation of the local hidden gauge model to SU(4), and we show that this dynamics fully respects the constraints of heavy quark spin symmetry. With the full space of states demanded by the heavy quark spin symmetry and the dynamics of the local hidden gauge, we look for states dynamically generated and find four basic states that are bound, corresponding to (D) over bar Sigma(c), (D) over bar Sigma(c)*, (D) over bar*Sigma(c) and (D) over bar*Sigma*(c) decaying mostly into eta N-c and J/psi N. All the states appear in isospin I = 1/2, and we find no bound states or resonances in I = 3/2. The (D) over bar Sigma(c) state appears in J = 1/2 and the (D) over bar Sigma*(c) in J = 3/2; the (D) over bar*Sigma(c) appears nearly degenerate in J = 1/2, 3/2 and the (D) over bar*Sigma*(c) appears nearly degenerate in J = 1/2, 3/2, 5/2, with the peculiarity that in J = 5/2 the state has zero width in the space of states chosen. All the states are bound with about 50 MeV with respect to the corresponding (D) over barB thresholds, and the width, except for the J = 5/2 state, is also of the same order of magnitude. Finally, we discuss the uncertainties stemming from the expected breaking of SU(4) and the heavy quark spin symmetry.
|
|
|
Li, H. P., Yi, J. Y., Xiao, C. W., Yao, D. L., Liang, W. H., & Oset, E. (2024). Correlation function and the inverse problem in the BD interaction. Chin. Phys. C, 48(5), 053107–7pp.
Abstract: We study the correlation functions of the (BD+)-D-0, (B+D0) system, which develops a bound state of approximately 40MeV, using inputs consistent with the T-cc(3875) state. Then, we address the inverse problem starting from these correlation functions to determine the scattering observables related to the system, including the existence of the bound state and its molecular nature. The important output of the approach is the uncertainty with which these observables can be obtained, considering errors in the (BD+)-D-0, (B+D0) correlation functions typical of current values in correlation functions. We find that it is possible to obtain scattering lengths and effective ranges with relatively high precision and the existence of a bound state. Although the pole position is obtained with errors of the order of 50% of the binding energy, the molecular probability of the state is obtained with a very small error of the order of 6%. All these findings serve as motivation to perform such measurements in future runs of high energy hadron collisions.
|
|
|
Molina, R., Xiao, C. W., Liang, W. H., & Oset, E. (2024). Correlation functions for the N*(1535) and the inverse problem. Phys. Rev. D, 109(5), 054002–10pp.
Abstract: The N*(1535) can be dynamically generated in the chiral unitary approach with the coupled channels, K0E+; K+E0; K+A, and eta p. In this work, we evaluate the correlation functions for every channel and face the inverse problem. Assuming the correlation functions to correspond to real measurements, we conduct a fit to the data within a general framework in order to extract the information contained in these correlation functions. The bootstrap method is used to determine the uncertainties of the different observables, and we find that, assuming errors of the same order than in present measurements of correlation functions, one can determine the scattering length and effective range of all channels with a very good accuracy. Most remarkable is the fact that the method predicts the existence of a bound state of isospin 12 nature around the mass of the N*(1535) with an accuracy of 6 MeV. These results should encourage the actual measurement of these correlation functions (only the K+A one is measured so far), which can shed valuable light on the relationship of the N*(1535) state to these coupled channels, a subject of continuous debate.
|
|
|
Bayar, M., Liang, W. H., Uchino, T., & Xiao, C. W. (2014). Description of rho(1700) as a rho Kappa(sic) system with the fixed-center approximation. Eur. Phys. J. A, 50(4), 67–10pp.
Abstract: We study the system with the aim to describe the rho(1700) resonance. The chiral unitary approach has achieved success in the description of systems of the light hadron sector. With this method, the system in the isospin sector I = 0, is found to be a dominant component of the f (0)(980) resonance. Therefore, by regarding the system as a cluster, the f (0)(980) resonance, we evaluate the system applying the fixed-center approximation to the Faddeev equations. We construct the rho K unitarized amplitude using the chiral unitary approach. As a result, we find a peak in the three-body amplitude around 1732 MeV and a width of about 161 MeV. The effect of the width of the rho and f (0)(980) is also discussed. We associate this peak to the rho(1700) which has a mass of 1720 +/- 20MeV and a width of 250 +/- 100 MeV.
|
|
|
Bayar, M., Xiao, C. W., Hyodo, T., Dote, A., Oka, M., & Oset, E. (2012). Energy and width of a narrow I=1/2 DNN quasibound state. Phys. Rev. C, 86(4), 044004–16pp.
Abstract: The energies and widths of DNN quasibound states with isospin I = 1/2 are evaluated in two methods, the fixed center approximation to the Faddeev equation and the variational method approach to the effective one-channel Hamiltonian. The DN interactions are constructed so they dynamically generate the Lambda(c)(2595) (I = 0, J(pi) = 1/2(-)) resonance state. We find that the system is bound by about 250 MeV from the DNN threshold, root s similar to 3500 MeV. Its width, including both the mesonic decay and the D absorption, is estimated to be about 20-40 MeV. The I = 0 DN pair in the DNN system is found to form a cluster that is similar to the Lambda(c)(2595).
|
|