Home | << 1 >> |
Achterberg, A., Amoroso, S., Caron, S., Hendriks, L., Ruiz de Austri, R., & Weniger, C. (2015). A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model. J. Cosmol. Astropart. Phys., 08(8), 006–27pp.
Abstract: Observations with the Fermi Large Area Telescope (LAT) indicate an excess in gamma rays originating from the center of our Galaxy. A possible explanation for this excess is the annihilation of Dark Matter particles. We have investigated the annihilation of neutralinos as Dark Matter candidates within the phenomenological Minimal Supersymmetric Standard Model (pMSSM). An iterative particle filter approach was used to search for solutions within the pMSSM. We found solutions that are consistent with astroparticle physics and collider experiments, and provide a fit to the energy spectrum of the excess. The neutralino is a Bino/Higgsino or Bino/Wino/Higgsino mixture with a mass in the range 84-92 GeV or 87-97 GeV annihilating into W bosons. A third solutions is found for a neutralino of mass 174-187 GeV annihilating into top quarks. The best solutions yield a Dark Matter relic density 0.06 < Omega h(2) < 0.13. These pMSSM solutions make clear forecasts for LHC, direct and indirect DM detection experiments. If the pMSSM explanation of the excess seen by Fermi-LAT is correct, a DM signal might be discovered soon.
|
Bertone, G., Calore, F., Caron, S., Ruiz de Austri, R., Kim, J. S., Trotta, R., et al. (2016). Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments. J. Cosmol. Astropart. Phys., 04(4), 037–20pp.
Abstract: We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass similar to 80 – 100 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass similar to 180 – 200 GeV annihilating into (l) over barl with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II – notably through searches for charginos and neutralinos, squarks and light smuons – and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.
|
Diamanti, R., Ando, S., Gariazzo, S., Mena, O., & Weniger, C. (2017). Cold dark matter plus not-so-clumpy dark relics. J. Cosmol. Astropart. Phys., 06(6), 008–17pp.
Abstract: Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.
|
Liem, S., Bertone, G., Calore, F., Ruiz de Austri, R., Tait, T. M. P., Trotta, R., et al. (2016). Effective field theory of dark matter: a global analysis. J. High Energy Phys., 09(9), 077–22pp.
Abstract: We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.
|
Utrilla Gines, E., Noordhuis, D., Weniger, C., & Witte, S. J. (2024). Numerical analysis of resonant axion-photon mixing. Phys. Rev. D, 110(8), 083007–24pp.
Abstract: Many present-day axion searches attempt to probe the mixing of axions and photons, which occurs in the presence of an external magnetic field. While this process is well understood in a number of simple and idealized contexts, a strongly varying or highly inhomogeneous background can impact the efficiency and evolution of the mixing in a nontrivial manner. In an effort to develop a generalized framework for analyzing axion-photon mixing in arbitrary systems, we focus in this work on directly solving the axion-modified form of Maxwell's equations across a simulation domain with a spatially varying background. We concentrate specifically on understanding resonantly enhanced axion-photon mixing in a highly magnetized plasma, which is a key ingredient for developing precision predictions of radio signals emanating from the magnetospheres of neutron stars. After illustrating the success and accuracy of our approach for simplified limiting cases, we compare our results with a number of analytic solutions recently derived to describe mixing in these systems. We find that our numerical method demonstrates a high level of agreement with one, but only one, of the published results. Interestingly, our method also recovers the mixing between the axion and magnetosonic-t and Alfve<acute accent>n modes; these modes cannot escape from the regions of dense plasma but could nontrivially alter the dynamics in certain environments. Future work will focus on extending our calculations to study resonant mixing in strongly variable backgrounds, mixing in generalized media (beyond the strong magnetic field limit), and the mixing of photons with other light bosonic fields, such as dark photons.
|