|
Abreu, L. M., Wang, W. F., & Oset, E. (2023). Traces of the new alpha(0)(1780) resonance in the J/Psi ->phi K+ K-(K-0 K_(0)) reaction. Eur. Phys. J. C, 83(3), 243–11pp.
Abstract: We study the J/Psi ->phi K+ K- decay, looking for differences in the production rates of K+K- or K-0 K-(0) in the region of 1700-1800 MeV, where two resonances appear dynamically generated from the vector-vector interaction. Two resonances are known experimentally in that region, the f(0)(1710) and a new resonance reported by the BABAR and BESIII collaborations. The K K should be produced with I = 0 in that reaction, but due to the different K*(0) and K*(+) masses some isospin violation appears. Yet, due to the large width of the K*, the violation obtained is very small and the rates of K+K- or K-0 K-0 production are equal within 5%. However, we also find that due to the step needed to convert two vectors into K K, a shape can appear in the K K mass distribution that can mimic the a0 production around the K* K* threshold, and is simply a threshold effect.
|
|
|
Feijoo, A., Wang, W. F., Xiao, C. W., Wu, J. J., Oset, E., Nieves, J., et al. (2023). A new look at the P-cs states from a molecular perspective. Phys. Lett. B, 839, 137760–7pp.
Abstract: We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.
|
|
|
Wang, W. F., Feijoo, A., Song, J., & Oset, E. (2022). Molecular Omega(ce), Omega(bb), and Omega(bc) states. Phys. Rev. D, 106(11), 116004–14pp.
Abstract: We study the interaction of meson-baryon coupled channels carrying quantum numbers of a Omega(ce), Omega(bb), and Omega(bc) presently under investigation by the LHCb Collaboration. The interaction is obtained from an extension of the local hidden gauge approach to the heavy quark sector that has proved to provide accurate results compared to experiment in the case of Omega(c), Xi(c) states and pentaquarks, P-c and P-cs. We obtain many bound states, with small decay widths within the space of the chosen coupled channels. The spin-parity of the states are J(P) = 1/2(-) for coupled channels of pseudoscalar-baryon (1/2(+)), J(P) = 3/2(-) for the case of pseudoscalar-baryon (3/2(+)), J(P) = 1/2(-), 3/2(-) for the case of vector-baryon (1/2(+)) and J(P) = 1/2(-), 3/2(-). 5/2(-) for the vector- baryon (3/2(+)) channels. We look for poles of the states and evaluate the couplings to the different channels. The couplings obtained for the open channels can serve as a guide to see in which reaction the obtained states are more likely to be observed.
|
|