Calibbi, L., Perez, J. J., Masiero, A., Park, J. H., Porod, W., & Vives, O. (2010). FCNC and CP violation observables in an SU(3)-flavoured MSSM. Nucl. Phys. B, 831(1-2), 26–71.
Abstract: A non-Abelian flavour symmetry in a minimal supersymmetric standard model can explain the flavour structures in the Yukawa couplings and simultaneously solve the SUSY flavour problem. Similarly the SUSY CP problem can be solved if CP is spontaneously broken in the flavour sector. In this work, we present an explicit example of these statements with an SU(3) flavour symmetry and spontaneous CP violation. In addition, we show that it is still possible to find some significant deviation from the SM expectations as far as FCNC and CP violation are concerned. We find that large contributions can be expected in lepton flavour violating decays, as μ-> e gamma and tau -> μgamma, electric dipole moments, d(e) and d(n) and kaon CP violating processes as epsilon(K). We also show that without further modifications, it is unlikely for these models to solve the Phi(Bs) anomaly at low-moderate tan beta. Thus, these flavoured MSSM realizations are phenomenologically sensitive to the experimental searches in the realm of flavor and CP violation physics.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., Mamuzic, J., Mitsou, V. A., Ruiz de Austri, R., et al. (2018). Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb(-1) of 13 TeV proton-proton collisions at the LHC. Phys. Lett. B, 782, 510–516.
Abstract: We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222 kg of aluminium samples, was exposed to 2.11 fb(-1) of 13 TeV proton-proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell-Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, we also consider couplings with momentum-dependent form factors. The search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
|
Barenboim, G., & Vives, O. (2015). Transplanckian inflation as gravity echoes. Phys. Lett. B, 748, 336–342.
Abstract: In this work, we show that, in the presence of non-minimal coupling to gravity, it is possible to generate sizeable tensor modes in single-field models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with non-minimal couplings. We present three simple single-field models that prove that it is possible to accommodatea large tensor-to-scalar ratio without requiring transplanckian field values within the slow-roll regime.
|
MoEDAL Collaboration(Acharya, B. et al), Mitsou, V. A., Papavassiliou, J., Ruiz de Austri, R., Santra, A., Vento, V., et al. (2022). Search for magnetic monopoles produced via the Schwinger mechanism. Nature, 602(7895), 63–67.
Abstract: Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.
|
MoEDAL Collaboration(Acharya, B. et al), Mitsou, V. A., Musumeci, E., Papavassiliou, J., Ruiz de Austri, R., Staelens, M., et al. (2024). MoEDAL Search in the CMS Beam Pipe for Magnetic Monopoles Produced via the Schwinger Effect. Phys. Rev. Lett., 133(7), 071803–7pp.
Abstract: We report on a search for magnetic monopoles (MMs) produced in ultraperipheral Pb-Pb collisions during Run 1 of the LHC. The beam pipe surrounding the interaction region of the CMS experiment was exposed to 184.07 μb-1 – 1 of Pb-Pb collisions at 2.76 TeV center-of-mass energy per collision in December 2011, before being removed in 2013. It was scanned by the MoEDAL experiment using a SQUID magnetometer to search for trapped MMs. No MM signal was observed. The two distinctive features of this search are the use of a trapping volume very close to the collision point and ultrahigh magnetic fields generated during the heavy-ion run that could produce MMs via the Schwinger effect. These two advantages allowed setting the first reliable, world-leading mass limits on MMs with high magnetic charge. In particular, the established limits are the strongest available in the range between 2 and 45 Dirac units, excluding MMs with masses of up to 80 GeV at a 95% confidence level.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Mamuzic, J., Mitsou, V. A., Papavassiliou, J., Ruiz de Austri, R., et al. (2021). First Search for Dyons with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions. Phys. Rev. Lett., 126(7), 071801–7pp.
Abstract: The MoEDAL trapping detector consists of approximately 800 kg of aluminum volumes. It was exposed during run 2 of the LHC program to 6.46 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminum volumes comprising the detector through a superconducting quantum interference device (SQUID) magnetometer. The presence of a trapped dyon would be signaled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to five Dirac charges (5g(D)) and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 870-3120 GeV and also monopoles with magnetic charge up to and including 5g(D) with mass limits in the range 870-2040 GeV.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Mamuzic, J., Mitsou, V. A., Papavassiliou, J., Ruiz de Austri, R., et al. (2019). Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production. Phys. Rev. Lett., 123(2), 021802–7pp.
Abstract: MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to or above the Dirac charge are excluded in all samples. Monopole spins 0, 1/2, and 1 are considered and both velocity-independent and-dependent couplings are assumed. This search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., Mamuzic, J., Mitsou, V. A., Ruiz de Austri, R., et al. (2017). Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC. Phys. Rev. Lett., 118(6), 061801–6pp.
Abstract: MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
|
Hagedorn, C., Lopez-Ibañez, M. L., Jay Perez, M., Hossain Rahat, M., & Vives, O. (2024). Flavon vacuum alignment beyond SUSY. Phys. Rev. D, 110(1), 015009–17pp.
Abstract: In flavor models the vacuum alignment of flavons is typically achieved via the F-terms of certain fields in the supersymmetric limit. We propose a method for preserving such alignments, up to a rescaling of the vacuum expectation values, even after softly breaking supersymmetry (and the flavor symmetry). This facilitates the vacuum alignment in models which are nonsupersymmetric at low energies. Examples of models with different flavor groups, namely, A4, T7, S4, and Delta & eth;27 & THORN;, are discussed.
|
Lopez-Ibañez, M. L., Melis, A., Jay Perez, M., Rahat, M. H., & Vives, O. (2022). Constraining low-scale flavor models with (g-2)(mu) and lepton flavor violation. Phys. Rev. D, 105(3), 035021–21pp.
Abstract: We present here two concrete examples of models where a sub-TeV scale breaking of their respective T-13 and A(5) flavor symmetries is able to account for the recently observed discrepancy in the muon anomalous magnetic moment, (g – 2)(mu). Similarities in the flavor structures of the charged-lepton Yukawa matrix and dipole matrix yielding (g – 2)(mu) give rise to strong constraints on low-scale flavor models when bounds from lepton flavor violation (LFV) are imposed. These constraints place stringent limits on the off- diagonal Yukawa structure, suggesting a mostly (quasi)diagonal texture for models with a low flavor breaking scale A(f). We argue that many of the popular flavor models in the literature designed to explain the fermion masses and mixings are not suitable for reproducing the observed discrepancy in (g – 2)(mu), which requires a delicate balance of maintaining a low flavor scale while simultaneously satisfying strong LFV constraints.
|