Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2022). Anomaly-free ALP from non-Abelian flavor symmetry. J. High Energy Phys., 08(8), 306–21pp.
Abstract: Motivated by the XENON1T excess in electron-recoil measurements, we investigate the prospects of probing axion-like particles (ALP) in lepton flavor violation experiments. In particular, we identify such ALP as a pseudo-Goldstone from the spontaneous breaking of the flavor symmetries that explain the mixing structure of the Standard Model leptons. We present the case of the flavor symmetries being a non-Abelian U(2) and the ALP originating from its U(1) subgroup, which is anomaly-free with the Standard Model group. We build two explicit realistic examples that reproduce leptonic masses and mixings and show that the ALP which is consistent with XENON1T anomaly could be probed by the proposed LFV experiments.
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2021). Anomaly-free leptophilic axionlike particle and its flavor violating tests. Phys. Rev. D, 103(3), 035028–7pp.
Abstract: Motivated by the recent Xenon1T result, we study a leptophilic flavor-dependent anomaly-free axionlike particle (ALP) and its effects on charged-lepton flavor violation. We present two representative models. The first one considers that the ALP origins from the flavon that generates the charged-lepton masses. The second model assumes a larger flavor symmetry such that more general mixings in the charged-lepton are possible, while maintaining flavor-dependent ALP couplings. We find that a keV ALP explaining the Xenon1T result is still viable for lepton flavor violation and stellar cooling astrophysical limits. On the other hand, if the Xenon1T result is confirmed, future charged-lepton flavor violation measurements can be complementary to probe such a possibility.
|
Bhattacharyya, G., Das, D., Jay Perez, M., Saha, I., Santamaria, A., & Vives, O. (2018). Can measurements of 2HDM parameters provide hints for high scale supersymmetry? Phys. Rev. D, 97(9), 095018–9pp.
Abstract: Two-Higgs-doublet models (2HDMs) arc minimal extensions of the Standard Model (SM) that may still be discovered at the LHC. The quartic couplings of their potentials can be determined from the measurement of the masses and branching ratios of their extended scalar sectors. We show that the evolution of these couplings through renormalization group equations can determine whether the observed 2HDM is a low energy manifestation of a more fundamental theory, as for instance, supersymmetry, which fixes the quartic couplings in terms of the gauge couplings. At leading order, the minimal supersymmetric extension of the SM (MSSM) dictates all the quartic couplings, which can be translated into a predictive structure for the scalar masses and mixings at the weak scale. Running these couplings to higher scales, one can check if they converge to their MSSM values, and more interestingly, whether one can infer the supersymmetry breaking scale. Although we study this question in the context of supersymmetry, this strategy could be applied to any theory whose ultraviolet completion unambiguously predicts all scalar quartic couplings.
|
Boubekeur, L., Dodelson, S., & Vives, O. (2012). Cold positrons from decaying dark matter. Phys. Rev. D, 86(10), 103520–14pp.
Abstract: Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often, heavier particles decay into the lightest dark matter particle as the Universe evolves. Here, we explore the possibilities which arise if one of the products in a (heavy particle) -> (dark matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models, but might even be consistent with that observed by the INTEGRAL satellite.
|
Lopez-Ibañez, M. L., Melis, A., Jay Perez, M., Rahat, M. H., & Vives, O. (2022). Constraining low-scale flavor models with (g-2)(mu) and lepton flavor violation. Phys. Rev. D, 105(3), 035021–21pp.
Abstract: We present here two concrete examples of models where a sub-TeV scale breaking of their respective T-13 and A(5) flavor symmetries is able to account for the recently observed discrepancy in the muon anomalous magnetic moment, (g – 2)(mu). Similarities in the flavor structures of the charged-lepton Yukawa matrix and dipole matrix yielding (g – 2)(mu) give rise to strong constraints on low-scale flavor models when bounds from lepton flavor violation (LFV) are imposed. These constraints place stringent limits on the off- diagonal Yukawa structure, suggesting a mostly (quasi)diagonal texture for models with a low flavor breaking scale A(f). We argue that many of the popular flavor models in the literature designed to explain the fermion masses and mixings are not suitable for reproducing the observed discrepancy in (g – 2)(mu), which requires a delicate balance of maintaining a low flavor scale while simultaneously satisfying strong LFV constraints.
|
de Medeiros Varzielas, I., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2018). Controlled flavor violation in the MSSM from a unified Delta(27) flavor symmetry. J. High Energy Phys., 09(9), 047–22pp.
Abstract: We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Delta(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the theta 13(l) angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavor effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.
|
Kaneko, S., Saito, H., Sato, J., Shimomura, T., Vives, O., & Yamanaka, M. (2011). Correlation between flavor-violating decay of long-lived slepton and tau in the coannihilation scenario with the seesaw mechanism. Phys. Rev. D, 83(11), 115005–10pp.
Abstract: We investigate flavor violating decays of the long-lived lightest slepton and the tau lepton in the coannihilation region of the minimal supersymmetric standard model with a seesaw mechanism to generate neutrino masses. We consider a situation where the mass difference between the lightest neutralino, as the lightest supersymmetric particle, and the lightest slepton, as the next-to-lightest supersymmetric particle, is smaller than the mass of tau lepton. In this situation, the lifetime of the lightest slepton is very long and it is determined by lepton flavor violating (LFV) couplings because the slepton mainly consists of the lighter stau and the flavor conserving 2-body decay is kinematically forbidden. We show that the lifetime can change many orders of magnitude by varying the Yukawa couplings entering the seesaw mechanism. We also show that the branching ratios of LFV tau decays are strongly correlated with the lightest slepton lifetime. Therefore the branching ratios of LFV tau decays can be determined or constrained by measuring the slepton lifetime at the LHC experiment.
|
Das, D., Lopez-Ibañez, M. L., Jay Perez, M., & Vives, O. (2017). Effective theories of flavor and the nonuniversal MSSM. Phys. Rev. D, 95(3), 035001–16pp.
Abstract: Flavor symmetries a la Froggatt-Nielsen provide a compelling way to explain the hierarchies of fermionic masses and mixing angles in the Yukawa sector. In supersymmetric (SUSY) extensions of the Standard Model where the mediation of SUSY breaking occurs at scales larger than the breaking of flavor, this symmetry must be respected not only by the Yukawas of the superpotential but also by the soft-breaking masses and trilinear terms. In this work we show that contrary to naive expectations, even starting with completely flavor blind soft breaking in the full theory at high scales, the low-energy sfermion mass matrices and trilinear terms of the effective theory, obtained upon integrating out the heavy mediator fields, are strongly nonuniversal. We explore the phenomenology of these SUSY flavor models after the latest LHC searches for new physics.
|
Ardu, M., Hossain Rahat, M., Valori, N., & Vives, O. (2024). Electric Dipole Moments as indirect probes of dark sectors. J. High Energy Phys., 11(11), 049–25pp.
Abstract: Dark sectors provide beyond Standard Model scenarios which can address unresolved puzzles, such as the observed dark matter abundance or the baryon asymmetry of the Universe. A naturally small portal to the dark sector is obtained if dark-sector interactions stem from a non-Abelian hidden gauge group that couples through kinetic mixing with the hypercharge boson. In this work, we investigate the phenomenology of such a portal of dimension five in the presence of CP violation, focusing on its signatures in fermion electric dipole moments. We show that, currently unbounded regions of the parameter space from dark photon searches can be indirectly probed with upcoming electron dipole moment experiments for dark boson masses in the range 1 – 100 GeV. We also discuss two particular scenarios where a SU(2)D dark gauge group spontaneously breaks into either an Abelian U(1)D or nothing. In both cases, we show that potentially observable electron dipole moments can be produced in vast regions of the parameter space compatible with current experimental constraints and observed dark matter abundance.
|
Barenboim, G., Bosch, C., Lopez-Ibañez, M. L., & Vives, O. (2013). Eviction of a 125 GeV “heavy”-Higgs from the MSSM. J. High Energy Phys., 11(11), 051–39pp.
Abstract: We prove that the present experimental constraints are already enough to rule out the possibility of the similar to 125 GeV Higgs found at LHC being the second lightest Higgs in a general MSSM context, even with explicit CP violation in the Higgs potential. Contrary to previous studies, we are able to eliminate this possibility analytically, using simple expressions for a relatively small number of observables. We show that the present LHC constraints on the diphoton signal strength, tau tau production through Higgs and BR(B -> X-s gamma) are enough to preclude the possibility of H-2 being the observed Higgs with m(H) similar or equal to 125 GeV within an MSSM context, without leaving room for finely tuned cancellations. As a by-product, we also comment on the difficulties of an MSSM interpretation of the excess in the gamma gamma production cross section recently found at CMS that could correspond to a second Higgs resonance at m(H) similar or equal to 136 GeV.
|