MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., King, M., Mitsou, V. A., Vento, V., et al. (2014). The physics programme of the MoEDAL experiment at the LHC. Int. J. Mod. Phys. A, 29(23), 1430050–91pp.
Abstract: The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly-ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multipurpose LHC detectors ATLAS and CMS.
|
Kaneko, S., Saito, H., Sato, J., Shimomura, T., Vives, O., & Yamanaka, M. (2011). Correlation between flavor-violating decay of long-lived slepton and tau in the coannihilation scenario with the seesaw mechanism. Phys. Rev. D, 83(11), 115005–10pp.
Abstract: We investigate flavor violating decays of the long-lived lightest slepton and the tau lepton in the coannihilation region of the minimal supersymmetric standard model with a seesaw mechanism to generate neutrino masses. We consider a situation where the mass difference between the lightest neutralino, as the lightest supersymmetric particle, and the lightest slepton, as the next-to-lightest supersymmetric particle, is smaller than the mass of tau lepton. In this situation, the lifetime of the lightest slepton is very long and it is determined by lepton flavor violating (LFV) couplings because the slepton mainly consists of the lighter stau and the flavor conserving 2-body decay is kinematically forbidden. We show that the lifetime can change many orders of magnitude by varying the Yukawa couplings entering the seesaw mechanism. We also show that the branching ratios of LFV tau decays are strongly correlated with the lightest slepton lifetime. Therefore the branching ratios of LFV tau decays can be determined or constrained by measuring the slepton lifetime at the LHC experiment.
|
Boubekeur, L., Dodelson, S., & Vives, O. (2012). Cold positrons from decaying dark matter. Phys. Rev. D, 86(10), 103520–14pp.
Abstract: Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often, heavier particles decay into the lightest dark matter particle as the Universe evolves. Here, we explore the possibilities which arise if one of the products in a (heavy particle) -> (dark matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models, but might even be consistent with that observed by the INTEGRAL satellite.
|
Bhattacharyya, G., Das, D., Jay Perez, M., Saha, I., Santamaria, A., & Vives, O. (2018). Can measurements of 2HDM parameters provide hints for high scale supersymmetry? Phys. Rev. D, 97(9), 095018–9pp.
Abstract: Two-Higgs-doublet models (2HDMs) arc minimal extensions of the Standard Model (SM) that may still be discovered at the LHC. The quartic couplings of their potentials can be determined from the measurement of the masses and branching ratios of their extended scalar sectors. We show that the evolution of these couplings through renormalization group equations can determine whether the observed 2HDM is a low energy manifestation of a more fundamental theory, as for instance, supersymmetry, which fixes the quartic couplings in terms of the gauge couplings. At leading order, the minimal supersymmetric extension of the SM (MSSM) dictates all the quartic couplings, which can be translated into a predictive structure for the scalar masses and mixings at the weak scale. Running these couplings to higher scales, one can check if they converge to their MSSM values, and more interestingly, whether one can infer the supersymmetry breaking scale. Although we study this question in the context of supersymmetry, this strategy could be applied to any theory whose ultraviolet completion unambiguously predicts all scalar quartic couplings.
|
Barenboim, G., Bosch, C., Lee, J. S., Lopez-Ibañez, M. L., & Vives, O. (2015). Flavor-changing Higgs boson decays into bottom and strange quarks in supersymmetric models. Phys. Rev. D, 92(9), 095017–15pp.
Abstract: In this work, we explore the flavor-changing decays H-i -> bs in a general supersymmetric scenario. In these models the flavor-changing decays arise at loop level, but-because they originate from a dimension-four operator-they do not decouple and may provide a first sign of new physics for heavy masses beyond the reach of colliders. In the framework of the minimal supersymmetric extension of the Standard Model, we find that the largest branching ratio of the lightest Higgs (H-1) is O(10(-6)) after imposing present experimental constraints, while heavy Higgs states may still present branching ratios O(10(-3)). In a more general supersymmetric scenario, where additional Higgs states may modify the Higgs mixings, the branching ratio BR(H-1 -> bs) can reach values O(10(-4)), while heavy Higgses still remain at O(10(-3)). Although these values are clearly out of reach for the LHC, a full study in a linear collider environment could be worth pursuing.
|
MoEDAL Collaboration(Acharya, B. et al), Mitsou, V. A., Musumeci, E., Papavassiliou, J., Ruiz de Austri, R., Staelens, M., et al. (2024). MoEDAL Search in the CMS Beam Pipe for Magnetic Monopoles Produced via the Schwinger Effect. Phys. Rev. Lett., 133(7), 071803–7pp.
Abstract: We report on a search for magnetic monopoles (MMs) produced in ultraperipheral Pb-Pb collisions during Run 1 of the LHC. The beam pipe surrounding the interaction region of the CMS experiment was exposed to 184.07 μb-1 – 1 of Pb-Pb collisions at 2.76 TeV center-of-mass energy per collision in December 2011, before being removed in 2013. It was scanned by the MoEDAL experiment using a SQUID magnetometer to search for trapped MMs. No MM signal was observed. The two distinctive features of this search are the use of a trapping volume very close to the collision point and ultrahigh magnetic fields generated during the heavy-ion run that could produce MMs via the Schwinger effect. These two advantages allowed setting the first reliable, world-leading mass limits on MMs with high magnetic charge. In particular, the established limits are the strongest available in the range between 2 and 45 Dirac units, excluding MMs with masses of up to 80 GeV at a 95% confidence level.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Mamuzic, J., Mitsou, V. A., Papavassiliou, J., Ruiz de Austri, R., et al. (2021). First Search for Dyons with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions. Phys. Rev. Lett., 126(7), 071801–7pp.
Abstract: The MoEDAL trapping detector consists of approximately 800 kg of aluminum volumes. It was exposed during run 2 of the LHC program to 6.46 fb(-1) of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminum volumes comprising the detector through a superconducting quantum interference device (SQUID) magnetometer. The presence of a trapped dyon would be signaled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to five Dirac charges (5g(D)) and an electric charge up to 200 times the fundamental electric charge for mass limits in the range 870-3120 GeV and also monopoles with magnetic charge up to and including 5g(D) with mass limits in the range 870-2040 GeV.
|
MoEDAL Collaboration(Acharya, B. et al), Bernabeu, J., Garcia, C., Mamuzic, J., Mitsou, V. A., Ruiz de Austri, R., et al. (2017). Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC. Phys. Rev. Lett., 118(6), 061801–6pp.
Abstract: MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2021). Anomaly-free leptophilic axionlike particle and its flavor violating tests. Phys. Rev. D, 103(3), 035028–7pp.
Abstract: Motivated by the recent Xenon1T result, we study a leptophilic flavor-dependent anomaly-free axionlike particle (ALP) and its effects on charged-lepton flavor violation. We present two representative models. The first one considers that the ALP origins from the flavon that generates the charged-lepton masses. The second model assumes a larger flavor symmetry such that more general mixings in the charged-lepton are possible, while maintaining flavor-dependent ALP couplings. We find that a keV ALP explaining the Xenon1T result is still viable for lepton flavor violation and stellar cooling astrophysical limits. On the other hand, if the Xenon1T result is confirmed, future charged-lepton flavor violation measurements can be complementary to probe such a possibility.
|
Lopez-Ibañez, M. L., Melis, A., Jay Perez, M., Rahat, M. H., & Vives, O. (2022). Constraining low-scale flavor models with (g-2)(mu) and lepton flavor violation. Phys. Rev. D, 105(3), 035021–21pp.
Abstract: We present here two concrete examples of models where a sub-TeV scale breaking of their respective T-13 and A(5) flavor symmetries is able to account for the recently observed discrepancy in the muon anomalous magnetic moment, (g – 2)(mu). Similarities in the flavor structures of the charged-lepton Yukawa matrix and dipole matrix yielding (g – 2)(mu) give rise to strong constraints on low-scale flavor models when bounds from lepton flavor violation (LFV) are imposed. These constraints place stringent limits on the off- diagonal Yukawa structure, suggesting a mostly (quasi)diagonal texture for models with a low flavor breaking scale A(f). We argue that many of the popular flavor models in the literature designed to explain the fermion masses and mixings are not suitable for reproducing the observed discrepancy in (g – 2)(mu), which requires a delicate balance of maintaining a low flavor scale while simultaneously satisfying strong LFV constraints.
|