|
Calibbi, L., Hodgkinson, R. N., Jones Perez, J., Masiero, A., & Vives, O. (2012). Flavour and collider interplay for SUSY at LHC7. Eur. Phys. J. C, 72(2), 1863–26pp.
Abstract: The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb(-1) run, we explore the flavour constraints on three models with a CMSSM-like spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as B-s -> μμand μ-> e gamma. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.
|
|
|
Calibbi, L., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2021). Implications of the Muon g-2 result on the flavour structure of the lepton mass matrix. Eur. Phys. J. C, 81(10), 929–11pp.
Abstract: The confirmation of the discrepancy with the Standard Model predictions in the anomalous magnetic moment by theMuon g-2 experiment at Fermilab points to a low scale of new physics. Flavour symmetries broken at low energies can account for this discrepancy but these models are much more restricted, as they would also generate offdiagonal entries in the dipole moment matrix. Therefore, if we assume that the observed discrepancy in the muon g – 2 is explained by the contributions of a low-energy flavor symmetry, lepton flavour violating processes can constrain the structure of the lepton mass matrices and therefore the flavour symmetries themselves predicting these structures. We apply these ideas to several discrete flavour symmetries popular in the leptonic sector, such as Delta(27), A(4), and A(5) proportional to CP.
|
|
|
Calibbi, L., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2020). Muon and electron g – 2 and lepton masses in flavor models. J. High Energy Phys., 06(6), 087–23pp.
Abstract: The stringent experimental bound on μ-> e gamma is compatible with a simultaneous and sizable new physics contribution to the electron and muon anomalous magnetic moments (g – 2)(l) (l = e, mu), only if we assume a non-trivial flavor structure of the dipole operator coefficients. We propose a mechanism in which the realization of the (g – 2)(l) correction is manifestly related to the mass generation through a flavor symmetry. A radiative flavon correction to the fermion mass gives a contribution to the anomalous magnetic moment. In this framework, we introduce a chiral enhancement from a non-trivial O(1) quartic coupling of the scalar potential. We show that the muon and electron anomalies can be simultaneously explained in a vast region of the parameter space with predicted vector-like mediators of masses as large as M chi is an element of [0.6, 2.5] TeV.
|
|
|
Calibbi, L., Perez, J. J., Masiero, A., Park, J. H., Porod, W., & Vives, O. (2010). FCNC and CP violation observables in an SU(3)-flavoured MSSM. Nucl. Phys. B, 831(1-2), 26–71.
Abstract: A non-Abelian flavour symmetry in a minimal supersymmetric standard model can explain the flavour structures in the Yukawa couplings and simultaneously solve the SUSY flavour problem. Similarly the SUSY CP problem can be solved if CP is spontaneously broken in the flavour sector. In this work, we present an explicit example of these statements with an SU(3) flavour symmetry and spontaneous CP violation. In addition, we show that it is still possible to find some significant deviation from the SM expectations as far as FCNC and CP violation are concerned. We find that large contributions can be expected in lepton flavour violating decays, as μ-> e gamma and tau -> μgamma, electric dipole moments, d(e) and d(n) and kaon CP violating processes as epsilon(K). We also show that without further modifications, it is unlikely for these models to solve the Phi(Bs) anomaly at low-moderate tan beta. Thus, these flavoured MSSM realizations are phenomenologically sensitive to the experimental searches in the realm of flavor and CP violation physics.
|
|
|
Das, D., Lopez-Ibañez, M. L., Jay Perez, M., & Vives, O. (2017). Effective theories of flavor and the nonuniversal MSSM. Phys. Rev. D, 95(3), 035001–16pp.
Abstract: Flavor symmetries a la Froggatt-Nielsen provide a compelling way to explain the hierarchies of fermionic masses and mixing angles in the Yukawa sector. In supersymmetric (SUSY) extensions of the Standard Model where the mediation of SUSY breaking occurs at scales larger than the breaking of flavor, this symmetry must be respected not only by the Yukawas of the superpotential but also by the soft-breaking masses and trilinear terms. In this work we show that contrary to naive expectations, even starting with completely flavor blind soft breaking in the full theory at high scales, the low-energy sfermion mass matrices and trilinear terms of the effective theory, obtained upon integrating out the heavy mediator fields, are strongly nonuniversal. We explore the phenomenology of these SUSY flavor models after the latest LHC searches for new physics.
|
|
|
de Medeiros Varzielas, I., Lopez-Ibañez, M. L., Melis, A., & Vives, O. (2018). Controlled flavor violation in the MSSM from a unified Delta(27) flavor symmetry. J. High Energy Phys., 09(9), 047–22pp.
Abstract: We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Delta(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1, 1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the theta 13(l) angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavor effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.
|
|
|
Felea, D., Mamuzic, J., Maselek, R., Mavromatos, N. E., Mitsou, V. A., Pinfold, J. L., et al. (2020). Prospects for discovering supersymmetric long-lived particles with MoEDAL. Eur. Phys. J. C, 80(5), 431–12pp.
Abstract: We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged particles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery reach complementary to ATLAS and CMS, thanks to looser selection criteria combined with the virtual absence of background. It is also interesting to point out that, in such scenarios, in which charged staus are the main long-lived candidates, the relevant mass range for MoEDAL is compatible with a potential role of Supersymmetry in providing an explanation for the anomalous events observed by the ANITA detector.
|
|
|
Hagedorn, C., Lopez-Ibañez, M. L., Jay Perez, M., Hossain Rahat, M., & Vives, O. (2024). Flavon vacuum alignment beyond SUSY. Phys. Rev. D, 110(1), 015009–17pp.
Abstract: In flavor models the vacuum alignment of flavons is typically achieved via the F-terms of certain fields in the supersymmetric limit. We propose a method for preserving such alignments, up to a rescaling of the vacuum expectation values, even after softly breaking supersymmetry (and the flavor symmetry). This facilitates the vacuum alignment in models which are nonsupersymmetric at low energies. Examples of models with different flavor groups, namely, A4, T7, S4, and Delta & eth;27 & THORN;, are discussed.
|
|
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., Wu, L., & Yang, J. M. (2020). LFV and (g-2) in non-universal SUSY models with light higgsinos. J. High Energy Phys., 05(5), 102–32pp.
Abstract: We consider a supersymmetric type-I seesaw framework with non-universal scalar masses at the GUT scale to explain the long-standing discrepancy of the anomalous magnetic moment of the muon. We find that it is difficult to accommodate the muon g-2 while keeping charged-lepton flavor violating processes under control for the conventional SO(10)-based relation between the up sector and neutrino sector. However, such tension can be relaxed by adding a Georgi-Jarlskog factor for the Yukawa matrices, which requires a non-trivial GUT-based model. In this model, we find that both observables are compatible for small mixings, CKM-like, in the neutrino Dirac Yukawa matrix.
|
|
|
Han, C., Lopez-Ibañez, M. L., Melis, A., Vives, O., & Yang, J. M. (2022). Anomaly-free ALP from non-Abelian flavor symmetry. J. High Energy Phys., 08(8), 306–21pp.
Abstract: Motivated by the XENON1T excess in electron-recoil measurements, we investigate the prospects of probing axion-like particles (ALP) in lepton flavor violation experiments. In particular, we identify such ALP as a pseudo-Goldstone from the spontaneous breaking of the flavor symmetries that explain the mixing structure of the Standard Model leptons. We present the case of the flavor symmetries being a non-Abelian U(2) and the ALP originating from its U(1) subgroup, which is anomaly-free with the Standard Model group. We build two explicit realistic examples that reproduce leptonic masses and mixings and show that the ALP which is consistent with XENON1T anomaly could be probed by the proposed LFV experiments.
|
|