
Barenboim, G., Bernabeu, J., Mitsou, V. A., Romero Adam, E., & Vives, O. (2016). METing SUSY on the Z peak. Eur. Phys. J. C, 76(2), 57–13pp.
Abstract: Recently the ATLAS experiment announced a 3 sigma excess at the Zpeak consisting of 29 pairs of leptons together with two or more jets, ET(miss) > 225 GeV and HT > 600 GeV, to be compared with 10.6 +/ 3.2 expected lepton pairs in the Standard Model. No excess outside the Zpeak was observed. By trying to explain this signal with SUSY we find that only relatively light gluinos, m((g) over bar) less than or similar to 1.2 TeV, together with a heavy neutralino NLSP of m((chi) over bar) greater than or similar to 400 GeV decaying predominantly to Zboson plus a light gravitino, such that nearly every gluino produces at least one Zboson in its decay chain, could reproduce the excess. We construct an explicit general gauge mediation model able to reproduce the observed signal overcoming all the experimental limits. Needless to say, more sophisticated models could also reproduce the signal, however, any model would have to exhibit the following features: light gluinos, or heavy particles with a strong production cross section, producing at least one Zboson in its decay chain. The implications of our findings for the Run II at LHC with the scaling on the Z peak, as well as for the direct search of gluinos and other SUSY particles, are pointed out.



Barenboim, G., Bosch, C., Lee, J. S., LopezIbañez, M. L., & Vives, O. (2015). Flavorchanging Higgs boson decays into bottom and strange quarks in supersymmetric models. Phys. Rev. D, 92(9), 095017–15pp.
Abstract: In this work, we explore the flavorchanging decays Hi > bs in a general supersymmetric scenario. In these models the flavorchanging decays arise at loop level, butbecause they originate from a dimensionfour operatorthey do not decouple and may provide a first sign of new physics for heavy masses beyond the reach of colliders. In the framework of the minimal supersymmetric extension of the Standard Model, we find that the largest branching ratio of the lightest Higgs (H1) is O(10(6)) after imposing present experimental constraints, while heavy Higgs states may still present branching ratios O(10(3)). In a more general supersymmetric scenario, where additional Higgs states may modify the Higgs mixings, the branching ratio BR(H1 > bs) can reach values O(10(4)), while heavy Higgses still remain at O(10(3)). Although these values are clearly out of reach for the LHC, a full study in a linear collider environment could be worth pursuing.



Barenboim, G., Bosch, C., LopezIbañez, M. L., & Vives, O. (2014). Improved taulepton tools for Higgs boson hunting. Phys. Rev. D, 90(1), 015003–14pp.
Abstract: In this work, we use the results from Higgs searches in the gamma gamma and tau tau decay channels at LHC and indirect bounds as BR (B > Xs gamma) to constrain the parameter space of a generic minimal supersymmetric standard model (MSSM) Higgs sector. In particular, we include the latest CMS results that look for additional Higgs states with masses up to 1 TeV. We show that the tau tau channel is the best and most accurate tool in the hunt for new Higgs states beyond the standard model. We obtain that present experimental results rule out additional neutral Higgs bosons in a generic MSSM below 300 GeV for any value of tan beta and, for instance, values of tan beta above 30 are only possible for Higgs masses above 600 GeV. ATLAS stored data have the potential to render this bound obsolete in the near future.



Barenboim, G., Bosch, C., LopezIbañez, M. L., & Vives, O. (2013). Eviction of a 125 GeV “heavy”Higgs from the MSSM. J. High Energy Phys., 11(11), 051–39pp.
Abstract: We prove that the present experimental constraints are already enough to rule out the possibility of the similar to 125 GeV Higgs found at LHC being the second lightest Higgs in a general MSSM context, even with explicit CP violation in the Higgs potential. Contrary to previous studies, we are able to eliminate this possibility analytically, using simple expressions for a relatively small number of observables. We show that the present LHC constraints on the diphoton signal strength, tau tau production through Higgs and BR(B > Xs gamma) are enough to preclude the possibility of H2 being the observed Higgs with m(H) similar or equal to 125 GeV within an MSSM context, without leaving room for finely tuned cancellations. As a byproduct, we also comment on the difficulties of an MSSM interpretation of the excess in the gamma gamma production cross section recently found at CMS that could correspond to a second Higgs resonance at m(H) similar or equal to 136 GeV.



Barenboim, G., & Vives, O. (2015). Transplanckian inflation as gravity echoes. Phys. Lett. B, 748, 336–342.
Abstract: In this work, we show that, in the presence of nonminimal coupling to gravity, it is possible to generate sizeable tensor modes in singlefield models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with nonminimal couplings. We present three simple singlefield models that prove that it is possible to accommodatea large tensortoscalar ratio without requiring transplanckian field values within the slowroll regime.



Bhattacharyya, G., Das, D., Jay Perez, M., Saha, I., Santamaria, A., & Vives, O. (2018). Can measurements of 2HDM parameters provide hints for high scale supersymmetry? Phys. Rev. D, 97(9), 095018–9pp.
Abstract: TwoHiggsdoublet models (2HDMs) arc minimal extensions of the Standard Model (SM) that may still be discovered at the LHC. The quartic couplings of their potentials can be determined from the measurement of the masses and branching ratios of their extended scalar sectors. We show that the evolution of these couplings through renormalization group equations can determine whether the observed 2HDM is a low energy manifestation of a more fundamental theory, as for instance, supersymmetry, which fixes the quartic couplings in terms of the gauge couplings. At leading order, the minimal supersymmetric extension of the SM (MSSM) dictates all the quartic couplings, which can be translated into a predictive structure for the scalar masses and mixings at the weak scale. Running these couplings to higher scales, one can check if they converge to their MSSM values, and more interestingly, whether one can infer the supersymmetry breaking scale. Although we study this question in the context of supersymmetry, this strategy could be applied to any theory whose ultraviolet completion unambiguously predicts all scalar quartic couplings.



Bjorkeroth, F., de Medeiros Varzielas, I., LopezIbañez, M. L., Melis, A., & Vives, O. (2019). Leptogenesis in Delta(27) with a universal texture zero. J. High Energy Phys., 09(9), 050–24pp.
Abstract: We investigate the possibility of viable leptogenesis in an appealing Delta(27) model with a universal texture zero in the (1,1) entry. The model accommodates the mass spectrum, mixing and CP phases for both quarks and leptons and allows for grand unification. Flavoured Boltzmann equations for the lepton asymmetries are solved numerically, taking into account both N1 and N2 righthanded neutrino decays. The N1dominated scenario is successful and the most natural option for the model, with M1 is an element of [10(9), 10(12)] GeV, and M1/M2 is an element of [0.002, 0.1], which constrains the parameter space of the underlying model and yields lower bounds on the respective Yukawa couplings. Viable leptogenesis is also possible in the N2dominated scenario, with the asymmetry in the electron flavour protected from N1 washout by the texture zero. However, this occurs in a region of parameter space which has a stronger mass hierarchy M1/M2< 0.002, and M2 relatively close to M3, which is not a natural expectation of the Delta(27) model.



Boubekeur, L., Choi, K. Y., Ruiz de Austri, R., & Vives, O. (2010). The degenerate gravitino scenario. J. Cosmol. Astropart. Phys., 04(4), 005–26pp.
Abstract: In this work, we explore the “degenerate gravitino” scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10(2) GeV. While for stau NLSP, temperatures of TRH similar or equal to 4 x 10(9) GeV can be obtained even for splittings of order of tens of GeVs. This “degenerate gravitino” scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.



Boubekeur, L., Dodelson, S., & Vives, O. (2012). Cold positrons from decaying dark matter. Phys. Rev. D, 86(10), 103520–14pp.
Abstract: Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often, heavier particles decay into the lightest dark matter particle as the Universe evolves. Here, we explore the possibilities which arise if one of the products in a (heavy particle) > (dark matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models, but might even be consistent with that observed by the INTEGRAL satellite.



Calibbi, L., Hodgkinson, R. N., Jones Perez, J., Masiero, A., & Vives, O. (2012). Flavour and collider interplay for SUSY at LHC7. Eur. Phys. J. C, 72(2), 1863–26pp.
Abstract: The current 7 TeV run of the LHC experiment shall be able to probe gluino and squark masses up to values larger than 1 TeV. Assuming that hints for SUSY are found in the jets plus missing energy channel by the end of a 5 fb(1) run, we explore the flavour constraints on three models with a CMSSMlike spectrum: the CMSSM itself, a seesaw extension of the CMSSM, and Flavoured CMSSM. In particular, we focus on decays that might have been measured by the time the run is concluded, such as Bs > μμand μ> e gamma. We also analyse constraints imposed by neutral meson bounds and electric dipole moments. The interplay between collider and flavour experiments is explored through the use of three benchmark scenarios, finding the flavour feedback useful in order to determine the model parameters and to test the consistency of the different models.

