|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Search for CP Violation in B-0-<(B-0)over bar> mixing using partial reconstruction of B-0 -> D*(-)Xl(+)nu(l) and a kaon tag. Phys. Rev. Lett., 111(10), 101802–7pp.
Abstract: We present results of a search for CP violation in B-0-(B) over bar (0) mixing with the BABAR detector. We select a sample of B0 -> D*-Xl(+)nu decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other B meson in the event. We determine the CP violating asymmetryA(CP) [N((BB0)-B-0) – N((B-0) over bar (B-0) over bar)]/[N((B-0) over bar (B-0) over bar) + N((BB0)-B-0)] = (0.06 +/- 0.17 +/- 0.38-0.32)%, corresponding to Delta(CP) = 1- vertical bar q/p vertical bar = (0.29 +/- 0.84+1.88-1.61) X 10(-3).
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of the D*(2010)(+) natural linewidth and the D*(2010)(+)-D-0 mass difference. Phys. Rev. D, 88(5), 052003–20pp.
Abstract: We measure the mass difference, Delta m(0), between the D*(2010)(+) and the D-0 and the natural linewidth, Gamma, of the transition D*(2010)(+) -> D-0 pi(+). The data were recorded with the BABAR detector at center-of-mass energies at and near the Upsilon(4S) resonance, and correspond to an integrated luminosity of approximately 477 fb(-1). The D-0 is reconstructed in the decay modes D-0 -> K-pi(+) and D-0 -> K-pi(+)pi(-)pi(+). For the decay mode D-0 -> K-pi(+) we obtain Gamma = (83.4 +/- 1.7 +/- 1.5) keV and Delta m(0) = (145425.6 +/- 0.6 +/- 1.8) keV, where the quoted errors are statistical and systematic, respectively. For the D-0 -> K-pi(+)pi(-)pi(+) mode we obtain Gamma = (83.2 +/- 1.5 +/- 2.6) keV and Delta m(0) = (145426.6 +/- 0.5 +/- 2.0) keV. The combined measurements yield Gamma = (83.3 +/- 1.2 +/- 1.4) keV and Delta m(0) = (145425.9 +/- 0.4 +/- 1.7) keV; the width is a factor of approximately 12 times more precise than the previous value, while the mass difference is a factor of approximately 6 times more precise.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of the D*(2010)(+) Meson Width and the D*(2010)(+) – D-0 Mass Difference. Phys. Rev. Lett., 111(11), 111801–8pp.
Abstract: We measure the mass difference Delta m(0) between the D*(2010)(+) and the D-0 and the natural linewidth Gamma of the transition D*(2010)(+) -> D-0 pi(+). The data were recorded with the BABAR detector at center-of-mass energies at and near the gamma(4S) resonance, and correspond to an integrated luminosity of approximately 477 fb(-1). The D-0 is reconstructed in the decay modes D-0 -> K-pi(+) and D-0 -> K-pi(+) and D-0 -> K-pi(+)pi(-)pi(+). For the decay mode D-0 -> K-pi(+) we obtain Gamma = (83.4 +/- 1.7 +/- 1.5) keV and Delta m(0) = (145425.6 +/- 0.6 +/- 18) keV, where the quoted errors are statistical and systematic, respectively. For the D-0 -> K-pi(+)pi(-)pi(+) mode we obtain Gamma = (83.2 +/- 1.5 +/- 2.6) keV and Delta m(0) = (145426.6 +/- 0.5 +/- 2.0) keV. The combined measurements yield Gamma = (83.3 +/- 1.2 +/- 1.4) keV and Delta m(0) (145425.9 +/- 0.4 +/- 1.7) keV; the width is a factor of approximately 12 times more precise than the previous value, while the mass difference is a factor of approximately 6 times more precise.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Search for a low-mass scalar Higgs boson decaying to a tau pair in single-photon decays of Y(1S). Phys. Rev. D, 88(7), 071102–8pp.
Abstract: We search for a low-mass scalar CP-odd Higgs boson, A(0), produced in the radiative decay of the upsilon resonance and decaying into a tau(+)tau(-) pair: Y(1S) -> gamma A(0). The production of Y(1S) mesons is tagged by Y(2S) -> pi(+)pi(-) Y(1S) transitions, using a sample of (98.3 +/- 0.9) x 10(6) Y(2S) mesons collected by the BABAR detector. We find no evidence for a Higgs boson in the mass range 3: 5 <= m(A)0 <= 9: 2 GeV, and combine these results with our previous search for the tau decays of the light Higgs in radiative Y(3S) decays, setting limits on the coupling of A(0) to the b (b) over bar quarks in the range 0.09-1.9. Our measurements improve the constraints on the parameters of the next-to-minimal-supersymmetric Standard Model and similar theories with low-mass scalar degrees of freedom.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of the B+ -> omega l(+) nu branching fraction with semileptonically tagged B mesons. Phys. Rev. D, 88(7), 072006–8pp.
Abstract: We report a measurement of the branching fraction of the exclusive charmless semileptonic decay B+ -> omega l(+) nu, where l is either an electron or amuon. We use samples of B+ mesons tagged by a reconstructed charmed semileptonic decay of the other B meson in the event. The measurement is based on a data set of 426.1 fb(-1) of e(+)e(-) collisions at a center-of-mass energy of 10.58 GeV recorded with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) storage rings. We measure a branching fraction of B(B+ -> omega l(+) nu) = (1.35 +/- 0.21 +/- 0.11) x 10(-4), where the uncertainties are statistical and systematic, respectively. We also present measurements of the partial branching fractions in three bins of q(2), the invariant-mass squared of the lepton-neutrino system, and we compare them to theoretical predictions of the form factors.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of an excess of (B)over-bar -> D-(*) tau(-)(v)over-bar(tau) decays and implications for charged Higgs bosons. Phys. Rev. D, 88(7), 072012–30pp.
Abstract: Based on the full BABAR data sample, we report improved measurements of the ratios R(D) = B((B) over bar -> D tau(-)(v) over bar (tau))/B((B) over bar -> Dl(-)(v) over bar (l)) and R(D*) = B((B) over bar -> D*tau(-)(v) over bar (tau))/B((B) over bar -> D*l(-)(v) over bar (l)), where l refers to either an electron or muon. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +/- 0.058 +/- 0.042 and R(D*) = 0.332 +/- 0.024 +/- 0.018, which exceed the standard model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, the results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. Kinematic distributions presented here exclude large portions of the more general type III two-Higgs-doublet model, but there are solutions within this model compatible with the results.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of the mass of the D-0 meson. Phys. Rev. D, 88(7), 071104–7pp.
Abstract: We report a measurement of the D-0 meson mass using the decay chain D* (2010) + -> D-0 pi(+) with D-0 -> K-K-K+pi(+). The data were recorded with the BABAR detector at center-of-mass energies at and near the Upsilon(4S) resonance, and correspond to an integrated luminosity of approximately 477 fb(-1). We obtain m(D-0) (1864: 841 +/- 0: 048 +/- 0: 063) MeV, where the quoted errors are statistical and systematic, respectively. The uncertainty of this measurement is half that of the best previous measurement.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of the e(+)e(-) -> p(p)over-bar cross section in the energy range from 3.0 to 6.5 GeV. Phys. Rev. D, 88(7), 072009–12pp.
Abstract: The e(+)e(-) -> p (p) over bar cross section and the proton magnetic form factor have been measured in the center-of-mass energy range from 3.0 to 6.5 GeV using the initial-state radiation technique with an undetected photon. This is the first measurement of the form factor at energies higher than 4.5 GeV. The analysis is based on 469 fb-1 of integrated luminosity collected with the BABAR detector at the PEP-II collider at e(+)e(-) center-of-mass energies near 10.6 GeV. The branching fractions for the decays J/psi -> p (p) over bar and psi(2S) -> p (p) over bar have also been measured.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2012). Study of X (3915) -> J/psi omega in two-photon collisions. Phys. Rev. D, 86(7), 072002–10pp.
Abstract: We study the process gamma gamma -> J/psi omega using a data sample of 519.2 fb(-1) recorded by the BABAR detector at SLAC at the PEP-II asymmetric-energy e(+)e(-) collider at center-of-mass energies near the gamma(nS) (n = 2, 3, 4) resonances. We confirm the existence of the charmoniumlike resonance X (3915) decaying to J/psi omega with a significance of 7.6 standard deviations, including systematic uncertainties, and measure its mass (3919.4 +/- 2.2 +/- 1.6) MeV/c(2) and width (13 +/- 6 +/- 3) MeV, where the first uncertainty is statistical and the second systematic. A spin-parity analysis supports the assignment J(P) = 0(+) and therefore the identification of the signal as due to the chi(c0)(2P) resonance. In this hypothesis we determine the product between the two-photon width and the final state branching fraction to be (52 +/- 10 +/- 3) eV.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2012). Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of vertical bar V-ub vertical bar. Phys. Rev. D, 86(9), 092004–31pp.
Abstract: We report the results of a study of the exclusive charmless semileptonic decays, B-0 -> pi(-)l(+)nu, B+ -> pi(0)l(+)nu, B+ -> omega l(+)nu, B+ -> eta l(+)nu, and B+ -> eta'l(+)nu (l = e or mu) undertaken with approximately 462 X 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q(2), the square of the momentum transferred to the lepton-neutrino pair, for B-0 -> pi(-)l(+)nu, B+ -> pi(0)l(+)nu, B+ -> omega l(+)nu, and B+ -> eta l(+)nu. From these distributions, we extract the form-factor shapes f(+)(q(2)) and the total branching fractions B(B-0 -> pi(-)l(+)nu) = (1.45 +/- 0.04(stat) +/- 0.06(syst)) X 10(-4) (combined pi(-) and pi(0) decay channels assuming isospin symmetry), B(B+ -> omega l(+)nu) = (1.19 +/- 016(stat) +/- 0.09(syst)) X 10(-4) and B(B+ -> eta l(+)nu) = (0.38 +/- 0.05(stat) +/- 0.05(syst)) X 10(-4). We also measure B(B+ -> eta'l(+)nu) = (0.24 +/- 0.08(stat) +/- 0.03(syst)) X 10(-4). We obtain values for the magnitude of the Cabibbo-Kobayashi-Maskawa (KM) matrix element vertical bar V-ub vertical bar by direct comparison with three different QCD calculations in restricted q(2) ranges of B -> pi l(+)nu decays. From a simultaneous fit to the experimental data over the full q(2) range and the FNAL/MILC lattice QCD predictions, we obtain vertical bar V-ub vertical bar = (3.25 +/- 0.31) X 10(-3), where the error is the combined experimental and theoretical uncertainty.
|
|