|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Antideuteron production in Upsilon(nS) decays and in e(+)e(-) -> q(q) over bar at root s approximate to 10.58 GeV. Phys. Rev. D, 89(11), 111102–8pp.
Abstract: We present measurements of the inclusive production of antideuterons in e(+)e(-) annihilation into hadrons at approximate to 10.58 GeV center-of-mass energy and in Upsilon(1S, 2S, 3S) decays. The results are obtained using data collected by the BABAR detector at the PEP-II electron-positron collider. Assuming a fireball spectral shape for the emitted antideuteron momentum, we find B(Upsilon(1S) -> (d) over barX) = (2.81 +/- 0.49(stat)-(+0.20)(0.24)(syst)) x 10(-5), B(Upsilon(2S) -> (d) over barX) = (2.64 +/- 0.11(stat)(-0.21)(+0.26)(syst)) x 10(-5), B(Upsilon(3S) -> (d) over barX) = (2.33 +/- 0.15(stat)(-0.28)(+0.31)(syst)) x 10(-5), and sigma(e(+)e(-) -> (d) over barX) = (9.63 +/- 0.41(stat)(-1.01)(+1.17)(syst) fb.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Bottomonium spectroscopy and radiative transitions involving the chi(bJ)(1P, 2P) states at BABAR. Phys. Rev. D, 90(11), 112010–20pp.
Abstract: We use (121 +/- 1) million Upsilon(3S) and (98 +/- 1) million Upsilon(2S) mesons recorded by the BABAR detector at the PEP-II e(+)e(-) collider at SLAC to perform a study of radiative transitions involving the chi(bJ)(1P, 2P) states in exclusive decays with mu(+)mu(-)gamma gamma final states. We reconstruct twelve channels in four cascades using two complementary methods. In the first we identify both signal photon candidates in the electromagnetic calorimeter (EMC), employ a calorimeter timing-based technique to reduce backgrounds, and determine branching-ratio products and fine mass splittings. These results include the best observational significance yet for the chi(b0)(2P) -> gamma Upsilon(2S) and chi(b0)(1P) -> gamma Upsilon(1S) transitions. In the second method, we identify one photon candidate in the EMC and one which has converted into an e(+)e(-) pair due to interaction with detector material, and we measure absolute product branching fractions. This method is particularly useful for measuring Upsilon(3S) -> gamma chi(b1,2)(1P) decays. Additionally, we provide the most up-to-date derived branching fractions, matrix elements and mass splittings for chi(b) transitions in the bottomonium system. Using a new technique, we also measure the two lowest-order spin-dependent coefficients in the nonrelativistic QCD Hamiltonian.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2012). Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of vertical bar V-ub vertical bar. Phys. Rev. D, 86(9), 092004–31pp.
Abstract: We report the results of a study of the exclusive charmless semileptonic decays, B-0 -> pi(-)l(+)nu, B+ -> pi(0)l(+)nu, B+ -> omega l(+)nu, B+ -> eta l(+)nu, and B+ -> eta'l(+)nu (l = e or mu) undertaken with approximately 462 X 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with a loose neutrino reconstruction technique. We obtain partial branching fractions in several bins of q(2), the square of the momentum transferred to the lepton-neutrino pair, for B-0 -> pi(-)l(+)nu, B+ -> pi(0)l(+)nu, B+ -> omega l(+)nu, and B+ -> eta l(+)nu. From these distributions, we extract the form-factor shapes f(+)(q(2)) and the total branching fractions B(B-0 -> pi(-)l(+)nu) = (1.45 +/- 0.04(stat) +/- 0.06(syst)) X 10(-4) (combined pi(-) and pi(0) decay channels assuming isospin symmetry), B(B+ -> omega l(+)nu) = (1.19 +/- 016(stat) +/- 0.09(syst)) X 10(-4) and B(B+ -> eta l(+)nu) = (0.38 +/- 0.05(stat) +/- 0.05(syst)) X 10(-4). We also measure B(B+ -> eta'l(+)nu) = (0.24 +/- 0.08(stat) +/- 0.03(syst)) X 10(-4). We obtain values for the magnitude of the Cabibbo-Kobayashi-Maskawa (KM) matrix element vertical bar V-ub vertical bar by direct comparison with three different QCD calculations in restricted q(2) ranges of B -> pi l(+)nu decays. From a simultaneous fit to the experimental data over the full q(2) range and the FNAL/MILC lattice QCD predictions, we obtain vertical bar V-ub vertical bar = (3.25 +/- 0.31) X 10(-3), where the error is the combined experimental and theoretical uncertainty.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2012). Branching fraction of tau(-) -> pi(-KsKs0)-K-0(pi(0))nu(tau) decays. Phys. Rev. D, 86(9), 092013–9pp.
Abstract: We present a study of tau(-) -> pi(-KsKs0)-K-0(pi(0))nu(tau) and tau(-) -> (K-KsKs0)-K-0(pi(0))nu(tau) decays using a data set of 430 million tau lepton pairs, corresponding to an integrated luminosity of 468 fb(-1), collected with the BABAR detector at the PEP-II asymmetric energy e(+)e(-) storage rings. We measure branching fractions of (2.31 +/- 0.04 +/- 0.08) x 10(-4) and (1.60 +/- 0.20 +/- 0.22) x 10(-5) for the tau(-) -> pi(-KsKs0)-K-0 nu(tau) and tau(-) -> pi(-KsKs0)-K-0 pi(0)nu(tau) decays, respectively. We find no evidence for tau(-) -> (K-KsKs0)-K-0 nu(tau) and tau(-) -> (K-KsKs0)-K-0 pi(0)nu(tau) decays and place upper limits on the branching fractions of 6.3 x 10(-7) and 4.0 x 10(-7) at the 90% confidence level.
|
|
|
Bernabeu, J., Mavromatos, N. E., & Villanueva-Perez, P. (2013). Consistent probabilistic description of the neutral Kaon system. Phys. Lett. B, 724(4-5), 269–273.
Abstract: The neutral Kaon system has both CF violation in the mass matrix and a non-vanishing lifetime difference in the width matrix. This leads to an effective Hamiltonian which is not a normal operator, with incompatible (non-commuting) masses and widths. In the Weisskopf-Wigner Approach (WWA), by diagonalizing the entire Hamiltonian, the unphysical non-orthogonal “stationary” states K-L,K-S are obtained. These states have complex eigenvalues whose real (imaginary) part does not coincide with the eigenvalues of the mass (width). matrix. In this work we describe the system as an open Lindblad-type quantum mechanical system due to Kaon decays. This approach, in terms of density matrices for initial and final states, provides a consistent probabilistic description, avoiding the standard problems because the width matrix becomes a composite operator not included in the Hamiltonian. We consider the dominant decay channel to two pions, so that one of the Kaon states with definite lifetime becomes stable. This new approach provides results for the time dependent decay rates in agreement with those of the WWA.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Cross sections for the reactions e+e- -> K0S K0L, K0S K0L pi+ pi-, K0S K0S pi+ pi-, and K0S K0S K+ K- from events with initial- state radiation. Phys. Rev. D, 89(9), 092002–25pp.
Abstract: We study the processes e+e- -> K0S K0L gamma, K0S K0L pi+ pi- gamma, K0S K0S pi+ pi- gamma, and K0S K0S K+ K- gamma, where the photon is radiated from the initial state, providing cross section measurements for the hadronic states over a continuum of center-of-mass energies. The results are based on 469 fb-1 of data collected with the BABAR detector at SLAC. We observe the phi(1020) resonance in the K0S K0L final state and measure the product of its electronic width and branching fraction with about 3% uncertainty. We present a measurement of the e+e- -> K0S K0L cross section in the energy range from 1.06 to 2.2 GeV and observe the production of a resonance at 1.67 GeV. We present the first measurements of the e+e- -> K0S K0L pi+ pi-, K0S K0S pi+ pi-, and K0S K0S K+ K- cross sections and study the intermediate resonance structures. We obtain the first observations of J/Psi decay to the K0S K0L pi+ pi-, K0S K0S pi+ pi-, and K0S K0S K+ K- final states.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2015). Dalitz plot analyses of B-0 -> (D-DK+)-K-0 and B+-> (D)over-bar(-)D(0)K(+) decays. Phys. Rev. D, 91(5), 052002–14pp.
Abstract: We present Dalitz plot analyses for the decays of B mesons to (D-DK+)-K-0 and (D) over bar (DK+)-D-0-K-0. We report the observation of the D*(s1)(2700)(+) resonance in these two channels and obtain measurements of the mass M(D*(s1)(2700)(+)) = 2699(-7)(+14) MeV/c(2) and of the width Gamma(D*(s1)(2700)(+)) = 127(-19)(+24) MeV, including statistical and systematic uncertainties. In addition, we observe an enhancement in the (DK+)-K-0 invariant mass around 2350-2500 MeV/c(2) in both decays B-0 -> (D-DK+)-K-0 and B+ -> (D) over bar (DK+)-D-0-K-0, which we are not able to interpret. The results are based on 429 fb(-1) of data containing 471 x 10(6) B (B) over bar pairs collected at the Upsilon(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Dalitz plot analysis of eta(c) -> K+K-eta and eta(c) -> K+K-pi(0) in two-photon interactions. Phys. Rev. D, 89(11), 112004–16pp.
Abstract: We study the processes gamma gamma -> K+K-eta and gamma gamma -> K+K-pi(0) using a data sample of 519 fb(-1) recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e(+)e(-) collider at center-of-mass energies at and near the Upsilon(nS) (n = 2, 3, 4) resonances. We observe eta(c) -> K+K-pi(0) and eta(c) -> K+K-eta decays, measure their relative branching fraction, and perform a Dalitz plot analysis for each decay. We observe the K*(0)(1430) -> K eta decay and measure its branching fraction relative to the K pi decay mode to be R(K*(0)(1430)) = B(K*(0)(1430)-> K eta)/B(K*(0)(1430)-> K pi) = 0.092 +/- 0.025(- 0.025)(+0.010). The eta(c) -> K+K-eta and K*(0)(1430) -> K eta results correspond to the first observations of these channels. The data also show evidence for eta(c)(2S) -> K+K-pi(0) and first evidence for eta(c)(2S) -> K+K-eta.
|
|
|
Bernabeu, J., Di Domenico, A., & Villanueva-Perez, P. (2013). Direct test of time reversal symmetry in the entangled neutral kaon system at a phi-factory. Nucl. Phys. B, 868(1), 102–119.
Abstract: We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolski-Rosen correlations of neutral kaon pairs produced at a phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time-ordered decays (l(-), pi pi) with the T-conjugated one defined by (3 pi(0), l(+)). With the use of this and other T-conjugated comparisons, the KLOE-2 experiment at DA Phi NE could make a statistically significant test.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2017). Evidence for CP violation in B+ -> K*(892)(+)pi(0) from a Dalitz plot analysis of B+ -> K-S(0) pi(+)pi(0) decays. Phys. Rev. D, 96(7), 072001–21pp.
Abstract: We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state K-S(0)pi(1) pi(0) using the full BABAR data set of 470.9 +/- 2.8 million B (B) over bar events collected at the gamma (4S) resonance. We measure the overall branching fraction and CP asymmetry to be B(B+ -> K-0 pi(+)pi(0)) = (31.8 +/- 1.8 +/- 2.1(-0.0)(+6.0)) x 10(-6) and A(CP)(B+ -> K-0 pi(+)pi(0)) = 0.07 +/- 0.05 +/- 0.03(-0.03)(+0.02), where the uncertainties are statistical, systematic, and due to the signal model, respectively. This is the first measurement of the branching fraction for B+ -> K-0 pi(+)pi(0). We find first evidence of a CP asymmetry in B+ -> K*(892)(+) pi(0) decays: A(CP)(B+ -> K*(892)(+)pi(0)) = -0.52 +/- 0.14 +/- 0.04(-0.02)(+0.04). The significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard deviations. We also measure the branching fractions and CP asymmetries for three other intermediate decay modes.
|
|