|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Production of charged pions, kaons, and protons in e(+)e(-) annihilations into hadrons at root s=10.54 GeV. Phys. Rev. D, 88(3), 032011–26pp.
Abstract: Inclusive production cross sections of pi(+/-), K-+/- and p/(p) over bar per hadronic e(+)e(-) annihilation event are measured at a center-of-mass energy of 10.54 GeV, using a relatively small sample of very high quality data from the BABAR experiment at the PEP-II B-factory at the SLAC National Accelerator Laboratory. The drift chamber and Cherenkov detector provide clean samples of identified pi(+/-), K-+/-, and p/(p) over bar over a wide range of momenta. Since the center-of-mass energy is below the threshold to produce a B (B) over bar pair, with B a bottom-quark meson, these data represent a pure e(+)e(-) -> q (q) over bar sample with four quark flavors, and are used to test QCD predictions and hadronization models. Combined with measurements at other energies, in particular at the Z(0) resonance, they also provide precise constraints on the scaling properties of the hadronization process over a wide energy range.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Search for a light Higgs boson decaying to two gluons or s(s)over-bar in the radiative decays of Upsilon(1S). Phys. Rev. D, 88(3), 031701–7pp.
Abstract: We search for the decay Upsilon(1S) -> A(0), A(0) -> gg or s (s) over bar, where A(0) is the pseudoscalar light Higgs boson predicted by the next-to-minimal supersymmetric Standard Model. We use a sample of (17.6 +/- 0.3) x 10(6) Upsilon(1S) mesons produced in the BABAR experiment via e(+)e(-) -> Upsilon(2S) -> pi(+)pi(-)Upsilon(1S). We see no significant signal and set 90%-confidence-level upper limits on the product branching fraction B(Upsilon(1S) -> gamma A(0)) . B(A(0) -> gg or s (s) over bar ranging from 10(-6) to 10(-2) for A(0) masses in the range 0.5-9.0 GeV/c(2).
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Search for di-muon decays of a low-mass Higgs boson in radiative decays of the Gamma(1S). Phys. Rev. D, 87(3), 031102–8pp.
Abstract: We search for di-muon decays of a low-mass Higgs boson (A(0)) produced in radiative Gamma(1S) decays. The Gamma(1S) sample is selected by tagging the pion pair in the Gamma(2S, 3S) -> pi(+)pi(-) Gamma(1S) transitions, using a data sample of 92.8 x 10(6) Gamma(2S) and 116.8 x 10(6) Gamma(3S) events collected by the BABAR detector. We find no evidence for A(0) production and set 90% confidence level upper limits on the product branching fraction B(Gamma(1S) -> gamma Lambda(0)) x B(Lambda(0)->mu(+)mu(-)) in the range of (0.28 – 9.7) x 10(-6) for 0.212 <= m(A0) <= 9.20 GeV/c(2). The results are combined with our previous measurements of Gamma(2S,3S) -> gamma Lambda(0), Lambda(0) -> mu(+)mu(-) to set limits on the effective coupling of the b quark to the Lambda(0).
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2015). Observation of the baryonic decay (B)over-bar(0) -> Lambda(+)(c)(p)over-barK(-)K(+). Phys. Rev. D, 91(3), 031102–7pp.
Abstract: We report the observation of the baryonic decay (B) over bar (0) -> Lambda(+)(c)(p) over barK(-)K(+) using a data sample of 471 x 10(6) B (B) over bar pairs produced in e(+)e(-) annihilations at root s = 10.58 GeV. This data sample was recorded with the BABAR detector at the PEP- II storage ring at SLAC. We find B((B) over bar (0) -> Lambda(+)(c)(p) over barK(-)K(+)) = (2.5 +/- 0.4((stat)) +/- 0.2((syst)) +/- 0.6(B(Lambda c+)) ) x 10(-5) where the uncertainties are statistical, systematic, and due to the uncertainty of the Lambda(+)(c) -> (p) over barK(-)pi(+) branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay (B) over bar (0) -> Lambda(+)(c)(p) over bar phi, we determine the upper limit B((B) over bar (0) -> Lambda(+)(c)(p) over bar phi) < 1.2 x 10(-5) at 90% confidence level.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Measurement of CP-violating asymmetries in B-0 -> (rho pi)(0) decays using a time-dependent Dalitz plot analysis. Phys. Rev. D, 88(1), 012003–26pp.
Abstract: We present results for a time-dependent Dalitz plot measurement of CP-violating asymmetries in the mode B-0 -> pi(+)pi(-)pi(0). The data set is derived from the complete sample of 471 x 10(6) B (B) over bar meson pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at the SLAC National Accelerator Laboratory operating on the Upsilon(4S) resonance. We extract parameters describing the time-dependent B-0 -> rho pi decay probabilities and CP asymmetries, including C = 0.016 +/- 0.059 +/- 0.036, Delta C = 0.234 +/- 0.061 +/- 0.048, S = 0.053 +/- 0.081 +/- 0.034, and Delta S = 0.054 +/- 0.082 +/- 0.039, where the uncertainties are statistical and systematic, respectively. We perform a two-dimensional likelihood scan of the direct CP-violation asymmetry parameters for B-0 -> rho(+/-)pi(-/+) decays, finding the change in chi(2) between the minimum and the origin (corresponding to no direct CP violation) to be Delta chi(2) = 6.42. We present information on the CP-violating parameter alpha in a likelihood scan that incorporates B-+/- -> rho pi measurements. To aid in the interpretation of our results, statistical robustness studies are performed to assess the reliability with which the true values of the physics parameters can be extracted. Significantly, these studies indicate that alpha cannot be reliably extracted with our current sample size, though the other physics parameters are robustly extracted.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2015). Study of B-+/-,B-0 -> J/psi(K+K-K +/-,0) and search for B-0 -> J/psi phi at BABAR. Phys. Rev. D, 91(1), 012003–12pp.
Abstract: We study the rare B meson decays B-+/-,B-0 -> J/psi(K+K-K +/-,0), B-+/-,B-0 -> J/psi phi K-+/-,K-0, and search for B-0 -> J/psi phi, using 469 x 10(6) B (B) over bar events collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II e(+)e(-) asymmetric energy collider. We present new measurements of branching fractions and a study of the J/psi phi mass distribution in search of new charmonium-like states. In addition, we search for the decay B-0 -> J/psi phi and find no evidence of a signal.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2014). Search for lepton-number violating B+ -> X(-)l(+)l '(+) decays. Phys. Rev. D, 89(1), 011102–8pp.
Abstract: We report on a search for eleven lepton-number violating processes B+ -> X(-)l(+)l'(+) with X- = K-, pi(-), rho(-), K*(-), or D- and l(+)/l'(+) = e(+) or mu(+), using a sample of 471 +/- 3 million B (B) over bar events collected with the BABAR detector at the PEP-II e(+)e(-) collider at the SLAC National Accelerator Laboratory. We find no evidence for any of these modes and place 90% confidence level upper limits on their branching fractions in the range (1.5-26) x 10(-7).
|
|
|
Bevan, A. J. et al, Martinez-Vidal, F., Pich, A., Azzolini, V., Bernabeu, J., Lopez-March, N., et al. (2014). The Physics of the B Factories. Eur. Phys. J. C, 74(11), 3026–916pp.
|
|
|
Bernabeu, J., Mavromatos, N. E., & Villanueva-Perez, P. (2013). Consistent probabilistic description of the neutral Kaon system. Phys. Lett. B, 724(4-5), 269–273.
Abstract: The neutral Kaon system has both CF violation in the mass matrix and a non-vanishing lifetime difference in the width matrix. This leads to an effective Hamiltonian which is not a normal operator, with incompatible (non-commuting) masses and widths. In the Weisskopf-Wigner Approach (WWA), by diagonalizing the entire Hamiltonian, the unphysical non-orthogonal “stationary” states K-L,K-S are obtained. These states have complex eigenvalues whose real (imaginary) part does not coincide with the eigenvalues of the mass (width). matrix. In this work we describe the system as an open Lindblad-type quantum mechanical system due to Kaon decays. This approach, in terms of density matrices for initial and final states, provides a consistent probabilistic description, avoiding the standard problems because the width matrix becomes a composite operator not included in the Hamiltonian. We consider the dominant decay channel to two pions, so that one of the Kaon states with definite lifetime becomes stable. This new approach provides results for the time dependent decay rates in agreement with those of the WWA.
|
|
|
BABAR Collaboration(Lees, J. P. et al), Martinez-Vidal, F., Oyanguren, A., & Villanueva-Perez, P. (2013). Time-integrated luminosity recorded by the BABAR detector at the PEP-II e(+)e(-) collider. Nucl. Instrum. Methods Phys. Res. A, 726, 203–213.
Abstract: We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e(+)e(-) collider at the Upsilon(4S), Upsilon(3S), and Upsilon(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e(+)e(-)-> e(+)e(-) and (for the Upsilon(4S) only) e(+)e(-)->mu(+)mu(-) candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e(+)e(-)-> e(+)e(-) and e(+)e(-)->mu(+)mu(-), the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the Upsilon(3S) and Upsilon(2S) resonances, an additional uncertainty arises due to Upsilon -> e(+)e(-)X background. For data collected off the Upsilon resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the Upsilon(4S), 0.58% (0.72%) for the Upsilon(3S), and 0.68% (0.88%) for the Upsilon(2S).
|
|