|
Terol-Calvo, J., Tortola, M., & Vicente, A. (2020). High-energy constraints from low-energy neutrino nonstandard interactions. Phys. Rev. D, 101(9), 095010–14pp.
Abstract: Many scenarios of new physics predict the existence of neutrino nonstandard interactions, new vector contact interactions between neutrinos, and first generation fermions beyond the Standard Model. We obtain model-independent constraints on the Standard Model effective field theory at high energies from bounds on neutrino nonstandard interactions derived at low energies. Our analysis explores a large set of new physics scenarios and includes full one-loop running effects below and above the electroweak scale. Our results show that neutrino nonstandard interactions already push the scale of new physics beyond the TeV. We also conclude that bounds derived by other experimental probes, in particular by low-energy precision measurements and by charged lepton flavor violation searches, are generally more stringent. Our study constitutes a first step toward the systematization of phenomenological analyses to evaluate the impact of neutrino nonstandard interactions for new physics scenarios at high energies.
|
|
|
Escribano, P., Reig, M., & Vicente, A. (2020). Generalizing the Scotogenic model. J. High Energy Phys., 07(7), 097–25pp.
Abstract: The Scotogenic model is an economical setup that induces Majorana neutrino masses at the 1-loop level and includes a dark matter candidate. We discuss a generalization of the original Scotogenic model with arbitrary numbers of generations of singlet fermion and inert doublet scalar fields. First, the full form of the light neutrino mass matrix is presented, with some comments on its derivation and with special attention to some particular cases. The behavior of the theory at high energies is explored by solving the Renormalization Group Equations.
|
|
|
Cepedello, R., Hirsch, M., Rocha-Moran, P., & Vicente, A. (2020). Minimal 3-loop neutrino mass models and charged lepton flavor violation. J. High Energy Phys., 08(8), 067–37pp.
Abstract: We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models “minimal” since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow regions of their parameter spaces.
|
|
|
Fuentes-Martin, J., Ruiz-Femenia, P., Vicente, A., & Virto, J. (2021). DsixTools 2.0: the effective field theory toolkit. Eur. Phys. J. C, 81(2), 167–30pp.
Abstract: DsixTools is a Mathematica package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. DsixTools contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). DsixTools also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
|
|
|
Escribano, P., & Vicente, A. (2021). Ultralight scalars in leptonic observables. J. High Energy Phys., 03(3), 240–37pp.
Abstract: Many new physics scenarios contain ultralight scalars, states which are either exactly massless or much lighter than any other massive particle in the model. Axions and majorons constitute well-motivated examples of this type of particle. In this work, we explore the phenomenology of these states in low-energy leptonic observables. After adopting a model independent approach that includes both scalar and pseudoscalar interactions, we briefly discuss the current limits on the diagonal couplings to charged leptons and consider processes in which the ultralight scalar phi is directly produced, such as μ-> e phi, or acts as a mediator, as in tau -> μμmu. Contributions to the charged leptons magnetic and electric moments are studied as well.
|
|
|
Centelles Chulia, S., Srivastava, R., & Vicente, A. (2021). The inverse seesaw family: Dirac and Majorana. J. High Energy Phys., 03(3), 248–29pp.
Abstract: After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking “mu -parameters”. These models can be tested both in colliders and with the observation of lepton flavour violating processes.
|
|
|
Escribano, P., Terol-Calvo, J., & Vicente, A. (2021). (g-2)(e,mu) in an extended inverse type-III seesaw model. Phys. Rev. D, 103(11), 115018–17pp.
Abstract: There has been a longstanding discrepancy between the experimental measurements of the electron and muon anomalous magnetic moments and their predicted values in the Standard Model. This is particularly relevant in the case of the muon g – 2, which has attracted a remarkable interest in the community after the long-awaited announcement of the first results by the Muon g – 2 collaboration at Fermilab, which confirms a previous measurement by the E821 experiment at Brookhaven and enlarges the statistical significance of the discrepancy, now at 4.2 sigma. In this paper we consider an extension of the inverse type-III seesaw with a pair of vectorlike leptons that induces masses for neutrinos at the electroweak scale and show that one can accommodate the electron and muon anomalous magnetic moments, while being compatible with all relevant experimental constraints.
|
|
|
Escribano, P., & Vicente, A. (2021). An ultraviolet completion for the Scotogenic model. Phys. Lett. B, 823, 136717–7pp.
Abstract: The Scotogenic model is an economical scenario that generates neutrino masses at the 1-loop level and includes a dark matter candidate. This is achieved by means of an ad hoc Z(2) symmetry, which forbids the tree-level generation of neutrino masses and stabilizes the lightest Z(2)-odd state. Neutrino masses are also suppressed by a quartic coupling, usually denoted by lambda(5). While the smallness of this parameter is natural, it is not explained in the context of the Scotogenic model. We construct an ultraviolet completion of the Scotogenic model that provides a natural explanation for the smallness of the lambda(5) parameter and induces the Z(2) parity as the low-energy remnant of a global U(1) symmetry at high energies. The low-energy spectrum contains, besides the usual Scotogenic states, a massive scalar and a massless Goldstone boson, hence leading to novel phenomenological predictions in flavor observables, dark matter physics and colliders.
|
|
|
Escribano, P., Hirsch, M., Nava, J., & Vicente, A. (2022). Observable flavor violation from spontaneous lepton number breaking. J. High Energy Phys., 01(1), 098–31pp.
Abstract: We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
|
|
|
De Romeri, V., Puerta, M., & Vicente, A. (2022). Dark matter in a charged variant of the Scotogenic model. Eur. Phys. J. C, 82(7), 623–16pp.
Abstract: Scotogenic models are among the most popular possibilities to link dark matter and neutrino masses. In this work we discuss a variant of the Scotogenic model that includes charged fermions and a doublet with hypercharge 3/2. Neutrino masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar dark matter candidate is viable in this version. After presenting the model and explaining some particularities about neutrino mass generation, we concentrate on its dark matter phenomenology. We show that the observed dark matter relic density can be correctly reproduced in the usual parameter space regions found for the standard Scotogenic model or the Inert Doublet model. In addition, the presence of the charged fermions opens up new viable regions, not present in the original scenarios, provided some tuning of the parameters is allowed.
|
|