|
Boucenna, S. M., Valle, J. W. F., & Vicente, A. (2015). Predicting charged lepton flavor violation from 3-3-1 gauge symmetry. Phys. Rev. D, 92(5), 053001–7pp.
Abstract: The simplest realization of the inverse seesaw mechanism in a SU(3)(C) circle times SU(3)(L) circle times U(1)(X) gauge theory offers striking flavor correlations between rare charged lepton flavor violating decays and the measured neutrino oscillations parameters. The predictions follow from the gauge structure itself without the need for any flavor symmetry. Such tight complementarity between charged lepton flavor violation and neutrino oscillations renders the scenario strictly testable.
|
|
|
Peinado, E., & Vicente, A. (2012). Neutrino masses from R-parity violation with a Z(3) symmetry. Phys. Rev. D, 86(9), 093024–9pp.
Abstract: We consider a supersymmetric model where the neutrino mass matrix arises from bilinear and trilinear R-parity violation, both restricted by a Z(3) flavor symmetry. Assuming flavor-blind soft supersymmetry breaking conditions, corrected at low energies due to running effects, we obtain a neutrino mass matrix in agreement with oscillation data. In particular, a large theta(13) angle can be easily accommodated. We also find a correlation between the reactor and atmospheric mixing angles. This leads in some scenarios to a clear deviation from theta(23) = pi/4. The lightest supersymmetric particle decay, dominated by the trilinear couplings, provides a direct way to test the model at colliders.
|
|
|
Hirsch, M., Staub, F., & Vicente, A. (2012). Enhancing l(i) -> 3l(j) with the Z(0)-penguin. Phys. Rev. D, 85(11), 113013–5pp.
Abstract: Lepton flavor violation has been observed in neutrino oscillations. For charged lepton flavor violation decays only upper limits are known, but sizable branching ratios are expected in many neutrino mass models. High-scale models, such as the classical supersymmetric seesaw, usually predict that decays l(i) -> 3l(j) are roughly a factor alpha smaller than the corresponding decays l(i) -> l(j)gamma. Here we demonstrate that the Z(0)-penguin diagram can give an enhancement for decays l(i) -> 3l(j) in many extensions of the minimal supersymmetric standard model (MSSM). We first discuss why the Z(0)-penguin is not dominant in the MSSM with seesaw and show that much larger contributions from the Z(0)-penguin are expected in general. We then demonstrate the effect numerically in two example models, namely, the supersymmetric inverse seesaw and R-parity violating supersymmetry.
|
|
|
Aebischer, J. et al, & Vicente, A. (2024). Computing tools for effective field theories. Eur. Phys. J. C, 84(2), 170–59pp.
Abstract: In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.
|
|
|
De Romeri, V., Puerta, M., & Vicente, A. (2022). Dark matter in a charged variant of the Scotogenic model. Eur. Phys. J. C, 82(7), 623–16pp.
Abstract: Scotogenic models are among the most popular possibilities to link dark matter and neutrino masses. In this work we discuss a variant of the Scotogenic model that includes charged fermions and a doublet with hypercharge 3/2. Neutrino masses are induced at the one-loop level thanks to the states belonging to the dark sector. However, in contrast to the standard Scotogenic model, only the scalar dark matter candidate is viable in this version. After presenting the model and explaining some particularities about neutrino mass generation, we concentrate on its dark matter phenomenology. We show that the observed dark matter relic density can be correctly reproduced in the usual parameter space regions found for the standard Scotogenic model or the Inert Doublet model. In addition, the presence of the charged fermions opens up new viable regions, not present in the original scenarios, provided some tuning of the parameters is allowed.
|
|
|
Fuentes-Martin, J., Ruiz-Femenia, P., Vicente, A., & Virto, J. (2021). DsixTools 2.0: the effective field theory toolkit. Eur. Phys. J. C, 81(2), 167–30pp.
Abstract: DsixTools is a Mathematica package for the handling of the standard model effective field theory (SMEFT) and the low-energy effective field theory (LEFT) with operators up to dimension six, both at the algebraic and numerical level. DsixTools contains a visually accessible and operationally convenient repository of all operators and parameters of the SMEFT and the LEFT. This repository also provides information concerning symmetry categories and number of degrees of freedom, and routines that allow to implement this information on global expressions (such as decay amplitudes and cross-sections). DsixTools also performs weak basis transformations, and implements the full one-loop Renormalization Group Evolution in both EFTs (with SM beta functions up to five loops in QCD), and the full one-loop SMEFT-LEFT matching at the electroweak scale.
|
|
|
Celis, A., Fuentes-Martin, J., Vicente, A., & Virto, J. (2017). DsixTools: the standard model effective field theory toolkit. Eur. Phys. J. C, 77(6), 405–40pp.
Abstract: We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the Delta B = Delta S = 1, 2 and Delta B = Delta C = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale.
|
|
|
Staub, F., Athron, P., Basso, L., Goodsell, M. D., Harries, D., Krauss, M. E., et al. (2016). Precision tools and models to narrow in on the 750 GeV diphoton resonance. Eur. Phys. J. C, 76(9), 516–57pp.
Abstract: The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
|
|
|
Esteves, J. N., Romao, J. C., Hirsch, M., Vicente, A., Porod, W., & Staub, F. (2010). LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM. J. High Energy Phys., 12(12), 077–44pp.
Abstract: We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but significantly below the GUT scale. Neutrino data is explained via a seesaw mechanism. We calculate the RGEs for superpotential and soft parameters complete at 2-loop order. At low energies lepton flavour violation (LFV) and small, but potentially measurable mass splittings in the charged scalar lepton sector appear, due to the RGE running. Different from the supersymmetric “pure seesaw” models, both, LFV and slepton mass splittings, occur not only in the left-but also in the right slepton sector. Especially, ratios of LFV slepton decays, such as Br((tau) over bar (R) -> μchi(0)(1))/Br((tau) over bar (L) -> μchi(0)(1)) are sensitive to the ratio of (B-L) and left-right symmetry breaking scales. Also the model predicts a polarization asymmetry of the outgoing positrons in the decay mu(+) -> e(+)gamma, A similar to [0, 1], which differs from the pure seesaw “prediction” A = 1. Observation of any of these signals allows to distinguish this model from any of the three standard, pure (mSugra) seesaw setups.
|
|
|
Boucenna, S. M., Celis, A., Fuentes-Martin, J., Vicente, A., & Virto, J. (2016). Phenomenology of an SU(2) x SU(2) x U(1) model with lepton-flavour non-universality. J. High Energy Phys., 12(12), 059–43pp.
Abstract: We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b -> clv and b -> sl(+) l(-) decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)(1) x SU(2)(2) x U(l)(Y) which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector -like fermions give rise to potentially large new physics contributions in flavour transitions mediated by WI and Z' bosons. This model can ease tensions in B -physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios RM =Gamma(B -> M mu(+)mu(-))/Gamma(B -> Me(+)e(-)), with M = K*, phi, are found to be reduced with respect to the Standard Model expectation R-M similar or equal to 1.
|
|