Peinado, E., & Vicente, A. (2012). Neutrino masses from R-parity violation with a Z(3) symmetry. Phys. Rev. D, 86(9), 093024–9pp.
Abstract: We consider a supersymmetric model where the neutrino mass matrix arises from bilinear and trilinear R-parity violation, both restricted by a Z(3) flavor symmetry. Assuming flavor-blind soft supersymmetry breaking conditions, corrected at low energies due to running effects, we obtain a neutrino mass matrix in agreement with oscillation data. In particular, a large theta(13) angle can be easily accommodated. We also find a correlation between the reactor and atmospheric mixing angles. This leads in some scenarios to a clear deviation from theta(23) = pi/4. The lightest supersymmetric particle decay, dominated by the trilinear couplings, provides a direct way to test the model at colliders.
|
Cepedello, R., Escribano, P., & Vicente, A. (2023). Neutrino masses, flavor anomalies, and muon g-2 from dark loops. Phys. Rev. D, 107(3), 035034–6pp.
Abstract: The lepton sector of the Standard Model is at present haunted by several intriguing anomalies, including an emerging pattern of deviations in b ? sll processes, with hints of lepton flavor universality violation, and a discrepancy in the muon anomalous magnetic moment. More importantly, it cannot explain neutrino oscillation data, which necessarily imply the existence of nonzero neutrino masses and lepton mixings. We propose a model that accommodates all the aforementioned anomalies, induces neutrino masses and provides a testable dark matter candidate. This is achieved by introducing a dark sector contributing to the observables of interest at the 1-loop level. Our setup provides a very economical explanation to all these open questions in particle physics and is compatible with the current experimental constraints.
|
Boucenna, S. M., Celis, A., Fuentes-Martin, J., Vicente, A., & Virto, J. (2016). Non-abelian gauge extensions for B-decay anomalies. Phys. Lett. B, 760, 214–219.
Abstract: We study the generic features of minimal gauge extensions of the Standard Model in view of recent hints of lepton-flavor non-universality in semi-leptonic b -> sl(+)l(-) and b -> cl nu decays. We classify the possible models according to the symmetry-breaking pattern and the source of flavor non-universality. We find that in viable models the SU(2)(L) factor is embedded non-trivially in the extended gauge group, and that gauge couplings should be universal, hinting to the presence of new degrees of freedom sourcing non-universality. Finally, we provide an explicit model that can explain the B-decay anomalies in a coherent way and confront it with the relevant phenomenological constraints.
|
Aoki, M., Toma, T., & Vicente, A. (2015). Non-thermal production of minimal dark matter via right-handed neutrino decay. J. Cosmol. Astropart. Phys., 09(9), 063–19pp.
Abstract: Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2)(L) quintuplet and a scalar SU(2)(L) septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.
|
Escribano, P., Hirsch, M., Nava, J., & Vicente, A. (2022). Observable flavor violation from spontaneous lepton number breaking. J. High Energy Phys., 01(1), 098–31pp.
Abstract: We propose a simple model of spontaneous lepton number violation with potentially large flavor violating decays, including the possibility that majoron emitting decays, such as μ-> e J, saturate the experimental bounds. In this model the majoron is a singlet-doublet admixture. It generates a type-I seesaw for neutrino masses and contains also a vector-like lepton. As a by-product, the model can explain the anomalous (g – 2)(mu), in parts of its parameter space, where one expects that the branching ratio of the Higgs to muons is changed with respect to Standard Model expectations. However, the explanation of the muon g – 2 anomaly would lead to tension with recent astrophysical bounds on the majoron coupling to muons.
|
Boucenna, S. M., Celis, A., Fuentes-Martin, J., Vicente, A., & Virto, J. (2016). Phenomenology of an SU(2) x SU(2) x U(1) model with lepton-flavour non-universality. J. High Energy Phys., 12(12), 059–43pp.
Abstract: We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b -> clv and b -> sl(+) l(-) decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)(1) x SU(2)(2) x U(l)(Y) which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector -like fermions give rise to potentially large new physics contributions in flavour transitions mediated by WI and Z' bosons. This model can ease tensions in B -physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios RM =Gamma(B -> M mu(+)mu(-))/Gamma(B -> Me(+)e(-)), with M = K*, phi, are found to be reduced with respect to the Standard Model expectation R-M similar or equal to 1.
|
Staub, F., Athron, P., Basso, L., Goodsell, M. D., Harries, D., Krauss, M. E., et al. (2016). Precision tools and models to narrow in on the 750 GeV diphoton resonance. Eur. Phys. J. C, 76(9), 516–57pp.
Abstract: The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
|
Boucenna, S. M., Valle, J. W. F., & Vicente, A. (2015). Predicting charged lepton flavor violation from 3-3-1 gauge symmetry. Phys. Rev. D, 92(5), 053001–7pp.
Abstract: The simplest realization of the inverse seesaw mechanism in a SU(3)(C) circle times SU(3)(L) circle times U(1)(X) gauge theory offers striking flavor correlations between rare charged lepton flavor violating decays and the measured neutrino oscillations parameters. The predictions follow from the gauge structure itself without the need for any flavor symmetry. Such tight complementarity between charged lepton flavor violation and neutrino oscillations renders the scenario strictly testable.
|
Kim, C. S., Lopez-Castro, G., Tostado, S. L., & Vicente, A. (2017). Remarks on the Standard Model predictions for R(D) and R(D*). Phys. Rev. D, 95(1), 013003–7pp.
Abstract: Semileptonic b -> c transitions, and in particular the ratios R(D-(*())) = Gamma(B -> D-(*())tau nu)/Gamma(B -> D-(*())l nu), can be used to test the universality of the weak interactions. In light of the recent discrepancies between the experimental measurements of these observables by the BABAR, Belle, and LHCb collaborations and the Standard Model predicted values, we study the robustness of the latter. Our analysis reveals that R(D) might be enhanced by lepton mass effects associated to the mostly unknown scalar form factor. In contrast, the Standard Model prediction for R(D*) is found to be more robust, because possible pollutions from B* contributions turn out to be negligibly small; this indicates that R(D) is a promising observable for searches of new physics.
|
Escribano, P., Martin Lozano, V., & Vicente, A. (2023). Scotogenic explanation for the 95 GeV excesses. Phys. Rev. D, 108(11), 115001–13pp.
Abstract: Several hints of the presence of a new state at about 95 GeV have been observed recently. The CMS and ATLAS Collaborations have reported excesses in the diphoton channel at about this diphoton invariant mass with local statistical significances of 2.9 sigma and 1.7 sigma, respectively. Furthermore, a 2 sigma excess in the bb over bar final state was also observed at LEP, again pointing at a similar mass value. We interpret these intriguing hints of new physics in a variant of the Scotogenic model, an economical scenario that induces Majorana neutrino masses at the loop level and includes a viable dark matter candidate. We show that our model can explain the 95 GeV excesses while respecting the relevant collider, Higgs, and electroweak precision bounds and discuss other phenomenological features of our scenario.
|