|
Alarcon, J. M., Hiller Blin, A. N., Vicente Vacas, M. J., & Weiss, C. (2017). Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis. Nucl. Phys. A, 964, 18–54.
Abstract: The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.
|
|
|
Alvarez-Ruso, L., Hernandez, E., Nieves, J., & Vicente Vacas, M. J. (2016). Watson's theorem and the N Delta(1232) axial transition. Phys. Rev. D, 93(1), 014016–16pp.
Abstract: We present a new determination of the N Delta axial form factors from neutrino induced pion production data. For this purpose, the model of Hernandez et al. [Phys. Rev. D 76, 033005 (2007)] is improved by partially restoring unitarity. This is accomplished by imposing Watson's theorem on the dominant vector and axial multipoles. As a consequence, a larger C-5(A) (0), in good agreement with the prediction from the off-diagonal Goldberger-Treiman relation, is now obtained.
|
|
|
Alvarez-Ruso, L., Ledwig, T., Martin Camalich, J., & Vicente Vacas, M. J. (2013). Nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD data. Phys. Rev. D, 88(5), 054507–20pp.
Abstract: The pion mass dependence of the nucleon mass within the covariant SU(2) baryon chiral perturbation theory both without and with explicit Delta(1232) degrees of freedom up to order p(4) is investigated. By fitting to a comprehensive set of lattice QCD data in 2 and 2 + 1 flavors from several collaborations, for pion masses M-pi < 420 MeV, we obtain low energy constants of natural size that are compatible with pion-nucleon scattering data. Our results are consistent with the rather linear pion mass dependence showed by lattice QCD. In the 2 flavor case we have also performed simultaneous fits to nucleon mass and sigma(pi N) data. As a result of our analysis, which encompasses the study of finite volume corrections and discretization effects, we report a value of sigma(pi N) = 41(5)(4) MeV in the 2 flavor case and sigma(pi N) = 52(3)(8) MeV for 2 + 1 flavors, where the inclusion of the Delta(1232) resonance changes the results by around 9 MeV. In the 2 flavor case we are able to set independently the scale for lattice QCD data, given by a Sommer scale of r(0) = 0.493(23) fm.
|
|
|
Alvarez-Ruso, L., Nieves, J., Ruiz Simo, I., Valverde, M., & Vicente Vacas, M. J. (2013). Charged kaon production by coherent scattering of neutrinos and antineutrinos on nuclei. Phys. Rev. C, 87(1), 015503–11pp.
Abstract: With the aim of achieving a better and more complete understanding of neutrino interactions with nuclear targets, the coherent production of charged kaons induced by neutrinos and antineutrinos is investigated in the energy range of some of the current neutrino experiments. We follow a microscopic approach which, at the nucleon level, incorporates the most important mechanisms allowed by the chiral-symmetry-breaking pattern of QCD. The distortion of the outgoing K ((K) over bar) is taken into account by solving the Klein-Gordon equation with realistic optical potentials. Angular and momentum distributions, as well as the energy and nuclear dependence of the total cross section, are studied.
|
|
|
Belen Galan, M., Alvarez-Ruso, L., Rafi Alam, M., Ruiz Simo, I., & Vicente Vacas, M. J. (2024). Cabibbo suppressed hyperon production off nuclei induced by antineutrinos. Phys. Rev. D, 109(3), 033001–13pp.
Abstract: In this work, we study the production of E and A hyperons in strangeness -changing AS = -1 chargedcurrent interactions of muon antineutrinos on nuclear targets. At the nucleon level, besides quasielastic scattering, we consider the inelastic mechanism in which a pion is produced alongside the hyperon. Its relevance for antineutrinos with energies below 2 GeV is conveyed in integrated and differential cross sections. We observe that the distributions on the angle between the hyperon and the final lepton are clearly different for quasielastic and inelastic processes. Hyperon final -state interactions, modeled with an intranuclear cascade, lead to a significant transfer from primary produced E's into final A's. They also cause considerable energy loss, which is apparent in hyperon energy distributions. We have investigated A production off 40Ar in the conditions of the recently reported MicroBooNE measurement. We find that the A pi contribution, dominated by E*(1385) excitation, accounts for about one third of the cross section.
|
|
|
Cabrera, D., Hiller Blin, A. N., & Vicente Vacas, M. J. (2017). phi meson self-energy in nuclear matter from phi N resonant interactions. Phys. Rev. C, 95(1), 015201–9pp.
Abstract: The phi-meson properties in cold nuclear matter are investigated by implementing resonant phi N interactions as described in effective approaches including the unitarization of scattering amplitudes. Several N*-like states are dynamically generated in these models around 2 GeV, in the vicinity of the phi N threshold. We find that both these states and the non-resonant part of the amplitude contribute sizably to the phi collisional self-energy at finite nuclear density. These contributions are of a similar strength as the widely studied medium effects from the KK cloud. Depending on model details (position of the resonances and strength of the coupling to phi N) we report a phi broadening up to about 40-50 MeV, to be added to the phi -> KK in-medium decay width, and an attractive optical potential at threshold up to about 35 MeV at normal matter density. The phi spectral function develops a double peak structure as a consequence of the mixing of resonance-hole modes with the phi quasiparticle peak. The former results point in the direction of making up for missing absorption as reported in phi nuclear production experiments.
|
|
|
Cabrera, D., Hiller Blin, A. N., Vicente Vacas, M. J., & Fernandez de Cordoba, P. (2017). phi meson transparency in nuclei from phi N resonant interactions. Phys. Rev. C, 96(3), 034618–6pp.
Abstract: We investigate the phi meson nuclear transparency using some recent theoretical developments on the phi in medium self-energy. The inclusion of direct resonant phi N scattering and the kaon decay mechanisms leads to a phi width much larger than in most previous theoretical approaches. The model has been confronted with photoproduction data from CLAS and LEPS and the recent proton induced phi production from COSY finding an overall good agreement. The results support the need of a quite large direct phi N-scattering contribution to the self-energy.
|
|
|
Gran, R., Nieves, J., Sanchez, F., & Vicente Vacas, M. J. (2013). Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV. Phys. Rev. D, 88(11), 113007–10pp.
Abstract: We extend to 10 GeV results from a microscopic calculation of charged-current neutrino-nucleus reactions that do not produce a pion in the final state. For the class of events coming from neutrino interactions with two nucleons producing two holes (2p2h), limiting the calculation to three-momentum transfers less than 1.2 GeV produces a two-dimensional distribution in momentum and energy transfer that is roughly constant as a function of energy. The cross section for 2p2h interactions approximately scales with the number of nucleons for isoscalar nuclei, similar to the quasi-elastic cross section. When limited to momentum transfers below 1.2 GeV, the cross section is 26% of the quasi-elastic cross section at 3 GeV, but 14% if we neglect a Delta(1232) resonance absorption component. The same quantities are 33% and 17% for antineutrinos. For the quasi-elastic interactions, the full nuclear model with long range correlations produces an even larger, but approximately constant distortion of the shape of the four-momentum transfer at all energies above 2 GeV. The 2p2h enhancement and long-range correlation distortions to the cross section for these interactions are significant enough they should be observable in precision experiments to measure neutrino oscillations and neutrino interactions at these energies, but also balance out and produce less total distortion than each effect does individually.
|
|
|
Guerrero Navarro, G. H., & Vicente Vacas, M. J. (2020). Threshold pion electro- and photoproduction off nucleons in covariant chiral perturbation theory. Phys. Rev. D, 102(11), 113016–23pp.
Abstract: Pion electro- and photoproduction off the nucleon close to threshold is studied in covariant baryon chiral perturbation theory at O(p(3)) in the extended-on-mass-shell scheme, with the explicit inclusion of the Delta(1232) resonance. The relevant low energy constants are fixed by fitting the available experimental data with the theoretical model. The inclusion of the Delta resonance as an explicit degree of freedom substantially improves the agreement with data and the convergence of the model.
|
|
|
Guerrero Navarro, G. H., Vicente Vacas, M. J., Hiller Blin, A. N., & Yao, D. L. (2019). Pion photoproduction off nucleons in covariant chiral perturbation theory. Phys. Rev. D, 100(9), 094021–18pp.
Abstract: Pion photoproduction off the nucleon close to threshold is studied in covariant baryon chiral perturbation theory at O(p(3)) in the extended-on-mass-shell scheme, with the explicit inclusion of the Delta(1232) resonance using the delta counting. The theory is compared to the available data of cross sections and polarization observables for all the charge channels. Most of the necessary low-energy constants arc well known from the analysis of other processes and the comparison with data constrains some of the still unknown ones. The Delta(1232) contribution is significant in improving the agreement with data, even at the low energies considered.
|
|