Dong, P. V., Huong, D. T., Queiroz, F. S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2018). The dark side of flipped trinification. J. High Energy Phys., 04(4), 143–31pp.
Abstract: We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
|
Carcamo Hernandez, A. E., Kovalenko, S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Neutrino predictions from a left-right symmetric flavored extension of the standard model. J. High Energy Phys., 02(2), 065–24pp.
Abstract: We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
|
Kang, S. K., Popov, O., Srivastava, R., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Scotogenic dark matter stability from gauged matter parity. Phys. Lett. B, 798, 135013–10pp.
Abstract: We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended SU(3) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N) electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.
|
de Anda, F. J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Flavour and CP predictions from orbifold compactification. Phys. Lett. B, 801, 135195–9pp.
Abstract: We propose a theory for fermion masses and mixings in which an A(4) family symmetry arises naturally from a six-dimensional spacetime after orbifold compactification. The flavour symmetry leads to the successful “golden” quark-lepton unification formula. The model reproduces oscillation parameters with good precision, giving sharp predictions for the CP violating phases of quarks and leptons, in particular delta(l) similar or equal to+268 degrees. The effective neutrinoless double-beta decay mass parameter is also sharply predicted as < m(beta beta)> similar or equal to 2.65 meV.
|
de Anda, F. J., Nath, N., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Probing the predictions of an orbifold theory of flavor. Phys. Rev. D, 101(11), 116012–8pp.
Abstract: We examine the implications of a recently proposed theory of fermion masses and mixings in which an A(4) family symmetry emerges from orbifold compactification. We analyze two variant schemes concerning their predictions for neutrino oscillations, neutrinoless double-beta decay, and the golden quark-lepton unification mass relation. We find that upcoming experiments DUNE as well as LEGEND and nEXO offer good chances of exploring a substantial region of neutrino parameters.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. Phys. Rev. D, 102(1), 015022–11pp.
Abstract: We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Scotogenic dark matter and Dirac neutrinos from unbroken gauged B – L symmetry. Phys. Lett. B, 807, 135537–5pp.
Abstract: We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B – L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.
|
Dias, A. G., Leite, J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Reloading the axion in a 3-3-1 setup. Phys. Lett. B, 810, 135829–12pp.
Abstract: We generalize the idea of the axion to an extended electroweak gauge symmetry setup. We propose a minimal axion extension of the Singer-Valle-Schechter (SVS) theory, in which the standard model fits in SU(3)(L) circle times U(1)(X), the number of families results from anomaly cancellation, and the Peccei-Quinn (PQ) solution to the strong-CP problem is implemented. Neutrino masses arise from a type-I Dirac seesaw mechanism, suppressed by the ratio of SVS and PQ scales, suggesting the existence of new physics at a moderate SVS scale. Novel features include an enhanced axion coupling to photons when compared to the DFSZ axion, as well as flavor-changing axion couplings to quarks.
|
Carcamo Hernandez, A. E., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Simple theory for scotogenic dark matter with residual matter-parity. Phys. Lett. B, 809, 135757–10pp.
Abstract: Dark matter stability can result from a residual matter-parity symmetry surviving spontaneous breaking of an extended gauge symmetry. We propose the simplest scotogenic dark matter completion of the original SVS theory [1], in which the “dark sector” particles as well as matter-parity find a natural theoretical origin within the model. We briefly comment on its main features.
|
de Anda, F. J., Antoniadis, I., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Scotogenic dark matter in an orbifold theory of flavor. J. High Energy Phys., 10(10), 190–13pp.
Abstract: We propose a flavour theory in which the family symmetry results naturally from a six-dimensional orbifold compactification. “Diracness” of neutrinos is a consequence of the spacetime dimensionality, and the fact that right-handed neutrinos live in the bulk. Dark matter is incorporated in a scotogenic way, as a result of an auxiliary Z(3) symmetry, and its stability is associated to the conservation of a “dark parity” symmetry. The model leads naturally to a “golden” quark-lepton mass relation.
|