Reig, M., Valle, J. W. F., Vaquera-Araujo, C. A., & Wilczek, F. (2017). A model of comprehensive unification. Phys. Lett. B, 774, 667–670.
Abstract: Comprehensive – that is, gauge and family – unification using spinors has many attractive features, but it has been challenged to explain chirality. Here, by combining an orbifold construction with more traditional ideas, we address that difficulty. Our candidate model features three chiral families and leads to an acceptable result for quantitative unification of couplings. A potential target for accelerator and astronomical searches emerges.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. Phys. Rev. D, 102(1), 015022–11pp.
Abstract: We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
|
Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). Dynamical seesaw mechanism for Dirac neutrinos. Phys. Lett. B, 755, 363–366.
Abstract: So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.
|
de Anda, F. J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Flavour and CP predictions from orbifold compactification. Phys. Lett. B, 801, 135195–9pp.
Abstract: We propose a theory for fermion masses and mixings in which an A(4) family symmetry arises naturally from a six-dimensional spacetime after orbifold compactification. The flavour symmetry leads to the successful “golden” quark-lepton unification formula. The model reproduces oscillation parameters with good precision, giving sharp predictions for the CP violating phases of quarks and leptons, in particular delta(l) similar or equal to+268 degrees. The effective neutrinoless double-beta decay mass parameter is also sharply predicted as < m(beta beta)> similar or equal to 2.65 meV.
|
Jimenez, E., & Vaquera-Araujo, C. A. (2016). Lagrangians for massive Dirac chiral superfields. Nucl. Phys. B, 907, 18–36.
Abstract: A variant for the superspin one-half massive superparticle in 4D, N = 1, based on Dirac superfields, is offered. As opposed to the current known models that use spinor chiral superfields, the propagating fields of the supermultiplet are those of the lowest mass dimensions possible: scalar, Dirac and vector fields. Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained, allowing a very straightforward implementation of the path-integral method. The corresponding superpropagators are presented. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, is given in terms of their component fields. The model is first presented for the case of two superspin one-half superparticles related by the charged conjugation operator, but in order to treat the case of neutral superparticles, the Majorana condition on the Dirac superfields is also studied. We compare our proposal with the known models of spinor superfields for the one-half superparticle and show that it is equivalent to them.
|
Carcamo Hernandez, A. E., Kovalenko, S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Neutrino predictions from a left-right symmetric flavored extension of the standard model. J. High Energy Phys., 02(2), 065–24pp.
Abstract: We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
|
Carcamo Hernandez, A. E., Kovalenko, S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Predictive Pati-Salam theory of fermion masses and mixing. J. High Energy Phys., 07(7), 118–25pp.
Abstract: We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.
|
de Anda, F. J., Nath, N., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Probing the predictions of an orbifold theory of flavor. Phys. Rev. D, 101(11), 116012–8pp.
Abstract: We examine the implications of a recently proposed theory of fermion masses and mixings in which an A(4) family symmetry emerges from orbifold compactification. We analyze two variant schemes concerning their predictions for neutrino oscillations, neutrinoless double-beta decay, and the golden quark-lepton unification mass relation. We find that upcoming experiments DUNE as well as LEGEND and nEXO offer good chances of exploring a substantial region of neutrino parameters.
|
Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). Realistic SU(3)(c) x SU(3)(L) x U(1)(X) model with a type II Dirac neutrino seesaw mechanism. Phys. Rev. D, 94(3), 033012–4pp.
Abstract: Here we propose a realistic SU(3)(c) circle times SU(3)(L) circle times U(1)(X) electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced in a natural way thanks to the presence of new scalars. The new SU(3)(c) circle times SU(3)(L) circle times U(1)(X) energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.
|
Dias, A. G., Leite, J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Reloading the axion in a 3-3-1 setup. Phys. Lett. B, 810, 135829–12pp.
Abstract: We generalize the idea of the axion to an extended electroweak gauge symmetry setup. We propose a minimal axion extension of the Singer-Valle-Schechter (SVS) theory, in which the standard model fits in SU(3)(L) circle times U(1)(X), the number of families results from anomaly cancellation, and the Peccei-Quinn (PQ) solution to the strong-CP problem is implemented. Neutrino masses arise from a type-I Dirac seesaw mechanism, suppressed by the ratio of SVS and PQ scales, suggesting the existence of new physics at a moderate SVS scale. Novel features include an enhanced axion coupling to photons when compared to the DFSZ axion, as well as flavor-changing axion couplings to quarks.
|