de Anda, F. J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Flavour and CP predictions from orbifold compactification. Phys. Lett. B, 801, 135195–9pp.
Abstract: We propose a theory for fermion masses and mixings in which an A(4) family symmetry arises naturally from a six-dimensional spacetime after orbifold compactification. The flavour symmetry leads to the successful “golden” quark-lepton unification formula. The model reproduces oscillation parameters with good precision, giving sharp predictions for the CP violating phases of quarks and leptons, in particular delta(l) similar or equal to+268 degrees. The effective neutrinoless double-beta decay mass parameter is also sharply predicted as < m(beta beta)> similar or equal to 2.65 meV.
|
Dias, A. G., Leite, J., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Reloading the axion in a 3-3-1 setup. Phys. Lett. B, 810, 135829–12pp.
Abstract: We generalize the idea of the axion to an extended electroweak gauge symmetry setup. We propose a minimal axion extension of the Singer-Valle-Schechter (SVS) theory, in which the standard model fits in SU(3)(L) circle times U(1)(X), the number of families results from anomaly cancellation, and the Peccei-Quinn (PQ) solution to the strong-CP problem is implemented. Neutrino masses arise from a type-I Dirac seesaw mechanism, suppressed by the ratio of SVS and PQ scales, suggesting the existence of new physics at a moderate SVS scale. Novel features include an enhanced axion coupling to photons when compared to the DFSZ axion, as well as flavor-changing axion couplings to quarks.
|
Dong, P. V., Huong, D. T., Queiroz, F. S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2018). The dark side of flipped trinification. J. High Energy Phys., 04(4), 143–31pp.
Abstract: We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.
|
Hati, C., Patra, S., Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Towards gauge coupling unification in left-right symmetric SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) theories. Phys. Rev. D, 96(1), 015004–9pp.
Abstract: We consider the possibility of gauge coupling unification within the simplest realizations of the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) gauge theory. We present a first exploration of the renormalization group equations governing the “bottom-up” evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) symmetry breaking scale M-X as low as a few TeV one can achieve unification in the presence of leptonic octets. We briefly comment on possible grand unified theory frameworks which can embed the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) model as well as possible implications, such as lepton flavor violating physics at the LHC.
|
Jimenez, E., & Vaquera-Araujo, C. A. (2016). Lagrangians for massive Dirac chiral superfields. Nucl. Phys. B, 907, 18–36.
Abstract: A variant for the superspin one-half massive superparticle in 4D, N = 1, based on Dirac superfields, is offered. As opposed to the current known models that use spinor chiral superfields, the propagating fields of the supermultiplet are those of the lowest mass dimensions possible: scalar, Dirac and vector fields. Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained, allowing a very straightforward implementation of the path-integral method. The corresponding superpropagators are presented. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, is given in terms of their component fields. The model is first presented for the case of two superspin one-half superparticles related by the charged conjugation operator, but in order to treat the case of neutral superparticles, the Majorana condition on the Dirac superfields is also studied. We compare our proposal with the known models of spinor superfields for the one-half superparticle and show that it is equivalent to them.
|
Kang, S. K., Popov, O., Srivastava, R., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Scotogenic dark matter stability from gauged matter parity. Phys. Lett. B, 798, 135013–10pp.
Abstract: We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended SU(3) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N) electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. Phys. Rev. D, 102(1), 015022–11pp.
Abstract: We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Scotogenic dark matter and Dirac neutrinos from unbroken gauged B – L symmetry. Phys. Lett. B, 807, 135537–5pp.
Abstract: We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B – L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.
|
Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Three-family left-right symmetry with low-scale seesaw mechanism. J. High Energy Phys., 05(5), 100–10pp.
Abstract: We suggest a new left-right symmetric model implementing a low-scale see-saw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z' gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.
|
Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Unifying left-right symmetry and 331 electroweak theories. Phys. Lett. B, 766, 35–40.
Abstract: We propose a realistic theory based on the SU(3) c. SU(3) L. SU(3) R. U(1) Xgauge group which requires the number of families to match the number of colors. In the simplest realization neutrino masses arise from the canonical seesaw mechanism and their smallness correlates with the observed V-A nature of the weak force. Depending on the symmetry breaking path to the Standard Model one recovers either a left-right symmetric theory or one based on the SU(3) c. SU(3) L. U(1) symmetry as the “next” step towards new physics.
|