Addazi, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). String completion of an SU(3)(c) x SU(3)(L) x U(1)(X) electroweak model. Phys. Lett. B, 759, 471–478.
Abstract: The extended electroweak SU(3)(c) circle times SU(3)(L) circle times U(1)(X) symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
|
Carcamo Hernandez, A. E., Hati, C., Kovalenko, S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2022). Scotogenic neutrino masses with gauged matter parity and gauge coupling unification. J. High Energy Phys., 03(3), 034–25pp.
Abstract: Building up on previous work we propose a Dark Matter (DM) model with gauged matter parity and dynamical gauge coupling unification, driven by the same physics responsible for scotogenic neutrino mass generation. Our construction is based on the extended gauge group SU(3)(c) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N), whose spontaneous breaking leaves a residual conserved matter parity, M-P, stabilizing the DM particle candidates of the model. The key role is played by Majorana SU(3) (L)-octet leptons, allowing the successful gauge coupling unification and a one-loop scotogenic neutrino mass generation. Theoretical consistency allows for a plethora of new particles at the less than or similar to O(10) TeV scale, hence accessible to future collider and low-energy experiments.
|
Carcamo Hernandez, A. E., Kovalenko, S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Neutrino predictions from a left-right symmetric flavored extension of the standard model. J. High Energy Phys., 02(2), 065–24pp.
Abstract: We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.
|
Carcamo Hernandez, A. E., Kovalenko, S., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Predictive Pati-Salam theory of fermion masses and mixing. J. High Energy Phys., 07(7), 118–25pp.
Abstract: We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.
|
Carcamo Hernandez, A. E., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Simple theory for scotogenic dark matter with residual matter-parity. Phys. Lett. B, 809, 135757–10pp.
Abstract: Dark matter stability can result from a residual matter-parity symmetry surviving spontaneous breaking of an extended gauge symmetry. We propose the simplest scotogenic dark matter completion of the original SVS theory [1], in which the “dark sector” particles as well as matter-parity find a natural theoretical origin within the model. We briefly comment on its main features.
|
Chen, P., Ding, G. J., Rojas, A. D., Vaquera-Araujo, C. A., & Valle, J. W. F. (2016). Warped flavor symmetry predictions for neutrino physics. J. High Energy Phys., 01(1), 007–27pp.
Abstract: A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.
|
de Anda, F. J., Antoniadis, I., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Scotogenic dark matter in an orbifold theory of flavor. J. High Energy Phys., 10(10), 190–13pp.
Abstract: We propose a flavour theory in which the family symmetry results naturally from a six-dimensional orbifold compactification. “Diracness” of neutrinos is a consequence of the spacetime dimensionality, and the fact that right-handed neutrinos live in the bulk. Dark matter is incorporated in a scotogenic way, as a result of an auxiliary Z(3) symmetry, and its stability is associated to the conservation of a “dark parity” symmetry. The model leads naturally to a “golden” quark-lepton mass relation.
|
de Anda, F. J., Medina, O., Valle, J. W. F., & Vaquera-Araujo, C. A. (2023). Revamping Kaluza-Klein dark matter in an orbifold theory of flavor. Phys. Rev. D, 108(3), 035046–11pp.
Abstract: We suggest a common origin for dark matter, neutrino mass and family symmetry within the orbifold theory proposed in [Phys. Lett. B 801, 135195 (2020); Phys. Rev. D 101, 116012 (2020)]. Flavor physics is described by an A(4) family symmetry that results naturally from compactification. Weakly interacting massive particle dark matter emerges from the first Kaluza-Klein excitation of the same scalar that drives family symmetry breaking and neutrino masses through the inverse seesaw mechanism. In addition to the “golden” quark-lepton mass relation and predictions for 0 nu beta beta decay, the model provides a good global description of all flavor observables.
|
de Anda, F. J., Medina, O., Valle, J. W. F., & Vaquera-Araujo, C. A. (2022). Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor. Phys. Rev. D, 105(5), 055030–12pp.
Abstract: The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.
|
de Anda, F. J., Nath, N., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Probing the predictions of an orbifold theory of flavor. Phys. Rev. D, 101(11), 116012–8pp.
Abstract: We examine the implications of a recently proposed theory of fermion masses and mixings in which an A(4) family symmetry emerges from orbifold compactification. We analyze two variant schemes concerning their predictions for neutrino oscillations, neutrinoless double-beta decay, and the golden quark-lepton unification mass relation. We find that upcoming experiments DUNE as well as LEGEND and nEXO offer good chances of exploring a substantial region of neutrino parameters.
|